627 research outputs found

    Inkjet Printing of Polyacrylic Acid-Coated Silver Nanoparticle Ink onto Paper with Sub-100 Micron Pixel Size

    Get PDF
    Printed electronics (PE) technology shows huge promise for the realisation of low-cost and flexible electronics, with the ability to pattern heat- or pressure-sensitive materials. In future developments of the PE market, the ability to produce highly conductive, high-resolution patterns using low-cost and roll-to-roll processes, such as inkjet printing, is a critical technology component for the fabrication of printed electronics and displays. Here, we demonstrate inkjet printing of polyacrylic acid (PAA) capped silver nanoparticle dispersions onto paper for high-conductivity electronic interconnects. We characterise the resulting print quality, feature geometry and electrical performance of inkjet patterned features and demonstrate the high-resolution printing, sub-100 micron feature size, of silver nanoparticle materials onto flexible paper substrate. Printed onto photo-paper, these materials then undergo chemically triggered sintering on exposure to chloride contained in the paper. We investigated the effect of substrate temperature on the properties of printed silver material from room temperature to 50 °C. At room temperature, the resistivity of single layer printed features, of average thickness of 500 nm and width 85 μm, was found to be 2.17 × 10−7 Ω·m or 13 times resistivity of bulk silver (RBS). The resistivity initially decreased with an increase in material thickness, when achieved by overprinting successive layers or by decreasing print pitch, and a resistivity of around 10 times RBS was observed after overprinting two times at pitch 75 μm and with single pass print pitch of between 60 and 80 μm, resulting in line thickness up to 920 nm. On further increases in thickness the resistivity increased and reached 27 times RBS at print pitch of 15 μm. On moderate heating of the substrate to 50 °C, more compact silver nanoparticle films were formed, reducing thickness to 200 nm from a single pass print, and lower material resistivity approaching five times RBS was achieved

    Process Compensated Resonance Testing Modeling for Damage Evolution and Uncertainty Quantification

    Get PDF
    Process Compensated Resonance Testing (PCRT) is a nondestructive evaluation method that measures and analyzes the resonance frequencies of a component for material state characterization, defect detection and process monitoring. PCRT inspections of gas turbine engine components have demonstrated the sensitivity of resonance frequencies to manufacturing defects and in-service thermal and mechanical damage. Prior work on PCRT modeling has developed forward modeling and model inversion techniques that simulate the effects of geometry variation, material property variation, and damage on Mar-M-247 nickel-based superalloy samples. Finite element method (FEM) forward model simulations predicted the effects of variation in geometry, material properties and damage on resonance frequencies. Model inversion used measured resonance frequencies to characterize the material state of components. Parallel work developed a process for uncertainty quantification (UQ) in PCRT models and measurements. The UQ process evaluated the propagation of uncertainty from various sources, identified the most significant uncertainty sources, and enabled uncertainty mitigation to improve model and measurement accuracy. Current efforts have expanded on those developments in several areas. One-factor-at-a-time (OFAT) forward model simulations were conducted on cylindrical dog bone coupons made from Mar-M-247. The simulations predicted the resonance frequency response to variation in geometry, elastic properties, crystallographic orientation, creep strain and cracking. The OFAT studies were followed by forward model Monte Carlo simulations that predicted the effects of multiple, concurrent sources of variation and damage on resonance frequencies, allowing characterization of virtual populations and quantification of uncertainty propagation. The Monte Carlo simulation design points were used to demonstrate the generation of a virtual database of components for training PCRT inspection applications, or “sorting modules.” Virtual database training sets can potentially overcome the limitations imposed by the availability of components and material states for training sets based on physical examples. Forward modeling tools and techniques were applied to titanium to simulate the effects of material variation, damage, and crystallographic texture. Forward modeling was also applied to more complex geometries, including a notional turbine blade, to demonstrate the application of modeling tools to shapes representative of gas turbine engine components. Model inversion tools and techniques have also advanced under the current effort. Prior inversion methods relied on iterative fitting to polynomial expressions for simple geometries and bulk material properties. Current efforts have demonstrated FEM-based model inversion which allows characterization of complex shapes and material states. FEM-based design spaces were generated, model inversion was carried out for surrogate modeled resonance spectra, and inversion performance was evaluated. Analysis of PCRT modeling results led to the development of automated resonance mode matching tools based on the calculation of modal assurance criteria (MAC) values, mode shape displacement metrics and Hungarian Algorithm sorting methods

    Recognition Properties and Competitive Assays of a Dual Dopamine/Serotonin Selective Molecularly Imprinted Polymer

    Get PDF
    A molecularly imprinted polymer (MIP) with dual dopamine/serotonin-like binding sites (DS-MIP) was synthesized for use as a receptor model of study the drug-interaction of biological mixed receptors at a molecular level. The polymer material was produced using methacrylic acid (MAA) and acrylamide (ACM) as functional monomers, N,N′-methylene bisacrylamide (MBAA) as cross-linker, methanol/water mixture (4:1, v/v) as porogen and a mixture of dopamine (D) and serotonin (S) as templates. The prepared DS-MIP exhibited the greatest rebinding of the template(s) in aqueous methanol solution with decreased recognition in acetonitrile, water and methanol solvent. The binding affinity and binding capacity of DS-MIP with S were found to be higher than those of DS-MIP with D. The selectivity profiles of DS-MIP suggest that the D binding site of DS-MIP has sufficient integrity to discriminate between species of non-optimal functional group orientation, whilst the S binding site of DS-MIP is less selective toward species having structural features and functional group orientations different from S. The ligand binding activities of a series of ergot derivatives (ergocryptine, ergocornine, ergocristine, ergonovine, agroclavine, pergolide and terguride) have been studied with the DS-MIP using a competitive ligand binding assay protocol. The binding affinities of DS-MIP were demonstrated in the micro- or submicro-molar range for a series of ergot derivatives, whereas the binding affinities were considerably greater to natural receptors derived from the rat hypothalamus. The DS-MIP afforded the same pattern of differentiation as the natural receptors, i.e. affinity for the clavines > lysergic acid derivatives > ergopeptines. The results suggest that the discrimination for the ergot derivatives by the dopamine and serotonin sites of DS-MIP is due to the structural features and functional orientation of the phenylethylamine and indolylethylamine entities at the binding sites, and the fidelity of the dopamine and serotonin imprinted cavities

    Highly selective BSA imprinted polyacrylamide hydrogels facilitated by a metal-coding MIP approach

    Get PDF
    We report the fabrication of metal-coded molecularly imprinted polymers (MIPs) using hydrogel-based protein imprinting techniques. A Co(II) complex was prepared using (E)-2-((2 hydrazide-(4-vinylbenzyl) hydrazono)methyl)phenol; along with iron(III) chloroprotoporphyrin (Hemin), vinylferrocene (VFc), zinc (II) protoporphyrin (ZnPP) and protoporphyrin (PP), these complexes were introduced into the MIPs as co-monomers for metal-coding of non-metalloprotein imprints. Results indicate a 66% enhancement for bovine serum albumin (BSA) protein binding capacities (Q, mg/g) via metal-ion/ligand exchange properties within the metal-coded MIPs. Specifically, Co(II)-complex-based MIPs exhibited 92 ± 1% specific binding with Q values of 5.7 ± 0.45 mg BSA/g polymer and imprinting factors (IF) of 14.8 ± 1.9 (MIP/non-imprinted (NIP) control). The selectivity of our Co(II)-coded BSA MIPs were also tested using bovine haemoglobin (BHb), lysozyme (Lyz), and trypsin (Tryp). By evaluating imprinting factors (K), each of the latter proteins was found to have lower affinities in comparison to cognate BSA template. The hydrogels were further characterised by thermal analysis and differential scanning calorimetry (DSC) to assess optimum polymer composition
    corecore