591 research outputs found

    Mapping submarine glacial landforms using acoustic methods

    Get PDF
    The mapping of submarine glacial landforms is largely dependent on marine geophysical survey methods capable of imaging the seafloor and sub-bottom through the water column. Full global coverage of seafloor mapping, equivalent to that which exists for the Earth's land surface, has, to date, only been achieved by deriving bathymetry from radar altimeters on satellites such as GeoSat and ERS-1 (Smith & Sandwell 1997). The horizontal resolution is limited by the footprint of the satellite sensors and the need to average out local wave and wind effects, resulting in a cell size of about 15 km (Sandwell et al. 2001). A further problem in high latitudes is that the altimeter data are extensively contaminated by the presence of sea ice, which degrades the derived bathymetry (McAdoo & Laxon 1997). Consequently, the satellite altimeter method alone is not suitable for mapping submarine glacial landforms, given that their morphological characterization usually requires a much finer level of detail. Acoustic mapping methods based on marine echo-sounding principles are currently the most widely used techniques for mapping submarine glacial landforms because they are capable of mapping at a much higher resolution

    THE BARILOCHE NEUTRON PHYSICS GROUP CURRENT ACTIVITIES

    Get PDF
    Our group has evolved around a small accelerator-based neutron source (ABNS), the 25 million electron Volt (MeV) linear electron accelerator at the Bariloche Atomic Centre. It is dedicated to applications of neutronic methods to tackle problems of basic sciences and to technological applications. Among these, the determination of total cross section of a material as a function of neutron energy by means of transmission experiments for thermal and sub-thermal neutrons is very sensitive to the geometric arrangement and movement of the atoms, over distances ranging from the 'first-neighbour scale' up to the microstructural level or 'grain scale'. This also allowed to test theoretical models of calculated cross sections and scattering kernels. Interest has moved from pulsed neutron diffraction towards deep inelastic neutron scattering (DINS), a powerful tool for the determination of atomic momentum distribution in condensed matter and for non-destructive mass spectroscopy. In recent years non-intrusive techniques aimed at the scanning of large cargo containers have started to be developed with this ABNS, testing the capacity and limitations to detect special nuclear material and dangerous substances in thick cargo arrangements. More recently, the use of the ever-present “bremsstrahlung” radiation has been recognized as a useful complement to instrumental neutron activation, as it permits to detect other nuclear species through high-energy photon activation. The facility is also used for graduate and undergraduate students experimental work within the frame of Instituto Balseiro Physics and Nuclear Engineering courses of study, and also MSc and PhD theses work

    THE BARILOCHE NEUTRON PHYSICS GROUP CURRENT ACTIVITIES

    Get PDF
    Our group has evolved around a small accelerator-based neutron source (ABNS), the 25 million electron Volt (MeV) linear electron accelerator at the Bariloche Atomic Centre. It is dedicated to applications of neutronic methods to tackle problems of basic sciences and to technological applications. Among these, the determination of total cross section of a material as a function of neutron energy by means of transmission experiments for thermal and sub-thermal neutrons is very sensitive to the geometric arrangement and movement of the atoms, over distances ranging from the 'first-neighbour scale' up to the microstructural level or 'grain scale'. This also allowed to test theoretical models of calculated cross sections and scattering kernels. Interest has moved from pulsed neutron diffraction towards deep inelastic neutron scattering (DINS), a powerful tool for the determination of atomic momentum distribution in condensed matter and for non-destructive mass spectroscopy. In recent years non-intrusive techniques aimed at the scanning of large cargo containers have started to be developed with this ABNS, testing the capacity and limitations to detect special nuclear material and dangerous substances in thick cargo arrangements. More recently, the use of the ever-present “bremsstrahlung” radiation has been recognized as a useful complement to instrumental neutron activation, as it permits to detect other nuclear species through high-energy photon activation. The facility is also used for graduate and undergraduate students experimental work within the frame of Instituto Balseiro Physics and Nuclear Engineering courses of study, and also MSc and PhD theses work

    The future of social is personal: the potential of the personal data store

    No full text
    This chapter argues that technical architectures that facilitate the longitudinal, decentralised and individual-centric personal collection and curation of data will be an important, but partial, response to the pressing problem of the autonomy of the data subject, and the asymmetry of power between the subject and large scale service providers/data consumers. Towards framing the scope and role of such Personal Data Stores (PDSes), the legalistic notion of personal data is examined, and it is argued that a more inclusive, intuitive notion expresses more accurately what individuals require in order to preserve their autonomy in a data-driven world of large aggregators. Six challenges towards realising the PDS vision are set out: the requirement to store data for long periods; the difficulties of managing data for individuals; the need to reconsider the regulatory basis for third-party access to data; the need to comply with international data handling standards; the need to integrate privacy-enhancing technologies; and the need to future-proof data gathering against the evolution of social norms. The open experimental PDS platform INDX is introduced and described, as a means of beginning to address at least some of these six challenges

    Signatures of the excitonic memory effects in four-wave mixing processes in cavity polaritons

    Full text link
    We report the signatures of the exciton correlation effects with finite memory time in frequency domain degenerate four-wave mixing (DFWM) in semiconductor microcavity. By utilizing the polarization selection rules, we discriminate instantaneous, mean field interactions between excitons with the same spins, long-living correlation due to the formation of biexciton state by excitons with opposite spins, and short-memory correlation effects in the continuum of unbound two-exciton states. The DFWM spectra give us the relative contributions of these effects and the upper limit for the time of the exciton-exciton correlation in the unbound two-exciton continuum. The obtained results reveal the basis of the cavity polariton scattering model for the DFWM processes in high-Q GaAs microcavity.Comment: 11 pages, 1 figur

    Diagnosis of central disorders of hypersomnolence: A reappraisal by European experts

    Get PDF
    Summary The aim of this European initiative is to facilitate a structured discussion to improve the next edition of the International Classification of Sleep Disorders (ICSD), particularly the chapter on central disorders of hypersomnolence. The ultimate goal for a sleep disorders classification is to be based on the underlying neurobiological causes of the disorders with clear implication for treatment or, ideally, prevention and or healing. The current ICSD classification, published in 2014, inevitably has important shortcomings, largely reflecting the lack of knowledge about the precise neurobiological mechanisms underlying the majority of sleep disorders we currently delineate. Despite a clear rationale for the present structure, there remain important limitations that make it difficult to apply in routine clinical practice. Moreover, there are indications that the current structure may even prevent us from gaining relevant new knowledge to better understand certain sleep disorders and their neurobiological causes. We suggest the creation of a new consistent, complaint driven, hierarchical classification for central disorders of hypersomnolence; containing levels of certainty, and giving diagnostic tests, particularly the MSLT, a weighting based on its specificity and sensitivity in the diagnostic context. We propose and define three diagnostic categories (with levels of certainty): 1/“Narcolepsy” 2/“Idiopathic hypersomnia”, 3/“Idiopathic excessive sleepiness” (with subtypes)Peer reviewe

    Race and delays in breast cancer treatment across the care continuum in the Carolina Breast Cancer Study

    Get PDF
    Background: After controlling for baseline disease factors, researchers have found that black women have worse breast cancer survival, and this suggests that treatment differences may contribute to poorer outcomes. Delays in initiating and completing treatment are one proposed mechanism. Methods: Phase 3 of the Carolina Breast Cancer Study involved a large, population-based cohort of women with incident breast cancer. For this analysis, we included black women (n = 1328) and white women (n = 1331) with stage I to III disease whose treatment included surgery with or without adjuvant therapies. A novel treatment pathway grouping was used to benchmark the treatment duration (surgery only, surgery plus chemotherapy, surgery plus radiation, or all 3). Models controlled for the treatment pathway, age, and tumor characteristics and for demographic factors related to health care access. Exploratory analyses of the association between delays and cancer recurrence were performed. Results: In fully adjusted analyses, blacks had 1.73 times higher odds of treatment initiation more than 60 days after their diagnosis in comparison with whites (odds ratio [OR], 1.73; 95% confidence interval [CI], 1.04-2.90). Black race was also associated with a longer treatment duration. Blacks were also more likely to be in the highest quartile of treatment duration (OR, 1.69; 95% CI, 1.41-2.02), even after adjustments for demographic and tumor characteristics (OR, 1.31; 95% CI, 1.04-1.64). A nonsignificant trend toward a higher recurrence risk was observed for patients with delayed initiation (hazard ratio, 1.44; 95% CI, 0.89-2.33) or the longest duration (hazard ratio, 1.17; 95% CI, 0.87-1.59). Conclusions: Black women more often had delayed treatment initiation and a longer duration than whites receiving similar treatment. Interventions that target access barriers may be needed to improve timely delivery of care
    corecore