882 research outputs found

    Chandra Measurements of a Complete Sample of X-ray Luminous Galaxy Clusters: The Luminosity-Mass Relation

    Get PDF
    We present the results of work involving a statistically complete sample of 34 galaxy clusters, in the redshift range 0.15≀\lez≀\le0.3 observed with ChandraChandra. We investigate the luminosity-mass (LMLM) relation for the cluster sample, with the masses obtained via a full hydrostatic mass analysis. We utilise a method to fully account for selection biases when modeling the LMLM relation, and find that the LMLM relation is significantly different than the relation modelled when not account for selection effects. We find that the luminosity of our clusters is 2.2±\pm0.4 times higher (when accounting for selection effects) than the average for a given mass, its mass is 30% lower than the population average for a given luminosity. Equivalently, using the LMLM relation measured from this sample without correcting for selection biases would lead to the underestimation by 40% of the average mass of a cluster with a given luminosity. Comparing the hydrostatic masses to mass estimates determined from the YXY_{X} parameter, we find that they are entirely consistent, irrespective of the dynamical state of the cluster.Comment: 31 pages, 43 figures, accepted for publication in MNRA

    Developmental pathways from toddler difficult temperament to child generalized psychopathology and adult functioning

    Get PDF
    BACKGROUND: Early difficult temperament and child mental health problems are consistently associated with impaired functioning in adulthood. We examined three potential pathways between difficult temperament in toddlerhood (age 2) and depressive symptoms (ages 21-23) and well-being (age 23): i) direct - early difficult temperament directly associates with these outcomes, ii) mediated - these direct effects are also mediated by a general psychopathology factor in late childhood/early adolescence (GPF; ages 7, 10,and 13), and iii) moderated-mediated - these mediated effects are also moderated by negative (age 42 months) and positive (age 33 months) parenting behaviors. METHODS: The analytic sample included 1892 mother-child dyads (33.4% male children) from the Avon Longitudinal Study of Parents and Children (ALSPAC). Mothers reported on their child's difficult temperament, negative parenting, positive parenting, and child's mental health symptoms. In adulthood, participants reported their own depressive symptoms and well-being (i.e. mental well-being, life satisfaction, happiness). RESULTS: First, early difficult temperament associated directly and positively with depressive symptoms, but negatively with well-being in adulthood. Second, the GPF in late childhood/early adolescence mediated these direct associations. Third, the mediated pathways were not moderated by negative or positive parenting. LIMITATIONS: i) low risk community sample, ii) early risks are based on maternal reports. CONCLUSIONS: Temperament is a risk factor for impaired psychosocial functioning in adulthood, manifested through increased susceptibility to psychopathology in childhood/adolescence. Although more research is needed to test their generalizability, these findings suggest that targeting early difficult temperament may alleviate the risk for later mental health difficulties and may increase general well-being

    An XMM and Chandra view of massive clusters of galaxies to z=1

    Full text link
    The X-ray properties of a sample of high redshift (z>0.6), massive clusters observed with XMM-Newton and Chandra are described, including two exceptional systems. One, at z=0.89, has an X-ray temperature of T=11.5 (+1.1, -0.9) keV (the highest temperature of any cluster known at z>0.6), an estimated mass of (1.4+/-0.2)x10^15 solar masses and appears relaxed. The other, at z=0.83, has at least three sub-clumps, probably in the process of merging, and may also show signs of faint filamentary structure at large radii,observed in X-rays. In general there is a mix of X-ray morphologies, from those clusters which appear relaxed and containing little substructure to some highly non-virialized and probably merging systems. The X-ray gas metallicities and gas mass fractions of the relaxed systems are similar to those of low redshift clusters of the same temperature, suggesting that the gas was in place, and containing its metals, by z=0.8. The evolution of the mass-temperature relation may be consistent with no evolution or with the ``late formation'' assumption. The effect of point source contamination in the ROSAT survey from which these clusters were selected is estimated, and the implications for the ROSAT X-ray luminosity function discussed.Comment: 9 pages, in Carnegie Observatories Astrophysics Series, Vol. 3: Clusters of Galaxies: Probes of Cosmological Structure and Galaxy Evolution, ed. J. S. Mulchaey, A. Dressler, and A. Oemler. See http://www.ociw.edu/ociw/symposia/series/symposium3/proceedings.html for a full-resolution versio

    The XXL Survey V: Detection of the Sunyaev-Zel'dovich effect of the Redshift 1.9 Galaxy Cluster XLSSU J021744.1-034536 with CARMA

    Get PDF
    We report the detection of the Sunyaev-Zel'dovich (SZ) effect of galaxy cluster XLSSU J021744.1-034536, using 30 GHz CARMA data. This cluster was discovered via its extended X-ray emission in the XMM-Newton Large Scale Structure survey, the precursor to the XXL survey. It has a photometrically determined redshift z=1.91−0.21+0.19z=1.91^{+0.19}_{-0.21}, making it among the most distant clusters known, and nominally the most distant for which the SZ effect has been measured. The spherically integrated Comptonization is Y500=(3.0±0.4)×10−12Y_{500}=(3.0\pm0.4)\times 10^{-12}, a measurement which is relatively insensitive to assumptions regarding the size and redshift of the cluster, as well as the background cosmology. Using a variety of locally calibrated cluster scaling relations extrapolated to z~2, we estimate a mass M500∌(1M_{500} \sim (1-2)×1014Msun2)\times 10^{14}M_{sun} from the X-ray flux and SZ signal. The measured properties of this cluster are in good agreement with the extrapolation of an X-ray luminosity-SZ effect scaling relation calibrated from clusters discovered by the South Pole Telescope at higher masses and lower redshifts. The full XXL-CARMA sample will provide a more complete, multi-wavelength census of distant clusters in order to robustly extend the calibration of cluster scaling relations to these high redshifts.Comment: ApJ, in press. 9 pages, 4 figures, 4 table

    X-MAS2: Study Systematics on the ICM Metallicity Measurements

    Full text link
    (Abridged)The X-ray measurements of the ICM metallicity are becoming more frequent due to the availability of powerful X-ray telescope with excellent spatial and spectral resolutions. The information which can be extracted from the measurements of the alpha-elements, like Oxygen, Magnesium and Silicon with respect to the Iron abundance is extremely important to better understand the stellar formation and its evolutionary history. In this paper we investigate possible source of bias connected to the plasma physics when recovering metal abundances from X-ray spectra. To do this we analyze 6 simulated galaxy clusters processed through the new version of our X-ray MAp Simulator, which allows to create mock XMM-Newton EPIC MOS1 and MOS2 observations. By comparing the spectroscopic results to the input values we find that: i) Fe is recovered with high accuracy for both hot (T>3 keV) and cold (T<2 keV) systems; at intermediate temperatures, however, we find a systematic overestimate which depends on the number counts; ii) O is well recovered in cold clusters, while in hot systems its measure may overestimate by a factor up to 2-3; iii) Being a weak line, the measurement of Mg is always difficult; despite of this, for cold systems (T<2 keV) we do not find any systematic behavior, while for very hot systems (T>5 keV) the spectroscopic measurement may be strongly overestimated up to a factor of 4; iv) Si is well recovered for all the clusters in our sample. We investigate in detail the nature of the systematic effects and biases found. We conclude that they are mainly connected with the multi-temperature nature of the projected observed spectra and to the intrinsic limitation of the XMM-Newton EPIC spectral resolution that does not always allow to disentangle among the emission lines produced by different elements.Comment: (e.g.: 17 pages, 8 figures, accepted for publication in the Astrophysical Journal, updated discussion to match published version-new section:6.3

    Statement of the Third International Exercise-Associated Hyponatremia Consensus Development Conference, Carlsbad, California, 2015

    Get PDF
    The third International Exercise-Associated Hyponatremia (EAH) Consensus Development Conference convened in Carlsbad, California in February 2015 with a panel of 17 international experts. The delegates represented 4 countries and 9 medical and scientific sub-specialties pertaining to athletic training, exercise physiology, sports medicine, water/sodium metabolism, and body fluid homeostasis. The primary goal of the panel was to review the existing data on EAH and update the 2008 Consensus Statement.1 This document serves to replace the second International EAH Consensus Development Conference Statement and launch an educational campaign designed to address the morbidity and mortality associated with a preventable and treatable fluid imbalance. The following statement is a summary of the data synthesized by the 2015 EAH Consensus Panel and represents an evolution of the most current knowledge on EAH. This document will summarize the most current information on the prevalence, etiology, diagnosis, treatment and prevention of EAH for medical personnel, athletes, athletic trainers, and the greater public. The EAH Consensus Panel strove to clearly articulate what we agreed upon, did not agree upon, and did not know, including minority viewpoints that were supported by clinical experience and experimental data. Further updates will be necessary to both: (1) remain current with our understanding and (2) critically assess the effectiveness of our present recommendations. Suggestions for future research and educational strategies to reduce the incidence and prevalence of EAH are provided at the end of the document as well as areas of controversy that remain in this topic. [excerpt

    A comparison of the strong lensing properties of the Sersic and the NFW profiles

    Full text link
    We investigate the strong lensing properties of the Sersic profile as an alternative to the NFW profile, focusing on applications to lens modelling of clusters. Given an underlying Sersic dark matter profile, we study whether an NFW profile can provide an acceptable fit to strong lensing constraints in the form of single or multiple measured Einstein radii. We conclude that although an NFW profile that fits the lensing constraints can be found in many cases, the derived parameters may be biased. In particular, we find that for n~2, which corresponds to massive clusters, the mass at r_200 of the best fit NFW is overestimated (by a factor of ~2) and the concentration is very low (c~2). The differences are important enough to warrant the inclusion of Sersic profile for future analysis of strong lensing clusters.Comment: 19 pages (single column format), 11 figures. Accepted for publication by JCA

    Chandra X-ray analysis of the massive high-redshift galaxy clusters ClJ1113.1-2615 and ClJ0152.7-1357

    Get PDF
    We present an analysis of Chandra observations of two high-redshift clusters of galaxies, ClJ1113.1-2615 at z=0.725 and ClJ0152.7-1357 at z=0.833. We find ClJ1113 to be relaxed with kT=4.3^{+0.5}_{-0.4}keV and a mass (within the virial radius) of 4.3^{+0.8}_{-0.7}*10^{14}Msol. ClJ0152, by contrast, is resolved into a northern and southern subcluster, each massive and X-ray luminous, in the process of merging. The temperatures of the subclusters are found to be 5.5^{+0.9}_{-0.8}keV and 5.2^{+1.1}_{-0.9}keV respectively, and their respective masses are 6.1^{+1.7}_{-1.5}*10^{14}Msol and 5.2^{+1.8}_{-1.4}*10^{14}Msol within the virial radii. 2D modelling of the X-ray surface brightness reveals excess emission between the subclusters; suggestive, but not conclusive evidence of a shock front. We make a first attempt at measuring the cluster M-T relation at z~0.8, and find no evolution in its normalisation, supporting the previous assumption of an unevolving M-T relation. We also find little or no evolution in the L-T relation, the gas fraction-T relation, the beta-T relation or the metallicity. These results suggest that, in at least some massive clusters, the hot gas was in place, and containing its metals, at z~0.8. We also highlight the need to correct for the degradation of the Chandra ACIS low energy quantum efficiency in high-redshift cluster studies when the low energy absorption is often assumed to be the Galactic value, rather than measured.Comment: 55 pages, 16 figures, Latex. Accepted for publication in Astrophysical Journal. Author address corrected, reference added. Error in Eqn 3 corrected - small changes to gas mass values in text and Fig 15. Conclusions unchange
    • 

    corecore