99 research outputs found

    Climatic and geographic predictors of life history variation in Eastern Massasauga (Sistrurus catenatus): A range-wide synthesis

    Get PDF
    Elucidating how life history traits vary geographically is important to understanding variation in population dynamics. Because many aspects of ectotherm life history are climate-dependent, geographic variation in climate is expected to have a large impact on population dynamics through effects on annual survival, body size, growth rate, age at first reproduction, size-fecundity relationship, and reproductive frequency. The Eastern Massasauga (Sistrurus catenatus) is a small, imperiled North American rattlesnake with a distribution centered on the Great Lakes region, where lake effects strongly influence local conditions. To address Eastern Massasauga life history data gaps, we compiled data from 47 study sites representing 38 counties across the range. We used multimodel inference and general linear models with geographic coordinates and annual climate normals as explanatory variables to clarify patterns of variation in life history traits. We found strong evidence for geographic variation in six of nine life history variables. Adult female snout-vent length and neonate mass increased with increasing mean annual precipitation. Litter size decreased with increasing mean temperature, and the size-fecundity relationship and growth prior to first hibernation both increased with increasing latitude. The proportion of gravid females also increased with increasing latitude, but this relationship may be the result of geographically varying detection bias. Our results provide insights into ectotherm life history variation and fill critical data gaps, which will inform Eastern Massasauga conservation efforts by improving biological realism for models of population viability and climate change

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Measurements of the ΜΌ\nu_{\mu} and ΜˉΌ\bar{\nu}_{\mu}-induced Coherent Charged Pion Production Cross Sections on 12C^{12}C by the T2K experiment

    Get PDF
    We report an updated measurement of the ΜΌ\nu_{\mu}-induced, and the first measurement of the ΜˉΌ\bar{\nu}_{\mu}-induced coherent charged pion production cross section on 12C^{12}C nuclei in the T2K experiment. This is measured in a restricted region of the final-state phase space for which pÎŒ,π>0.2p_{\mu,\pi} > 0.2 GeV, cos⁥(ΞΌ)>0.8\cos(\theta_{\mu}) > 0.8 and cos⁥(Ξπ)>0.6\cos(\theta_{\pi}) > 0.6, and at a mean (anti)neutrino energy of 0.85 GeV using the T2K near detector. The measured ΜΌ\nu_{\mu} CC coherent pion production flux-averaged cross section on 12C^{12}C is (2.98±0.37(stat.)±0.31(syst.)+0.49−0.00(Q2 model))×10−40 cm2(2.98 \pm 0.37 (stat.) \pm 0.31 (syst.) \substack{ +0.49 \\ -0.00 } \mathrm{ (Q^2\,model)}) \times 10^{-40}~\mathrm{cm}^{2}. The new measurement of the ΜˉΌ\bar{\nu}_{\mu}-induced cross section on 12C^{12}{C} is (3.05±0.71(stat.)±0.39(syst.)+0.74−0.00(Q2 model))×10−40 cm2(3.05 \pm 0.71 (stat.) \pm 0.39 (syst.) \substack{ +0.74 \\ -0.00 } \mathrm{(Q^2\,model)}) \times 10^{-40}~\mathrm{cm}^{2}. The results are compatible with both the NEUT 5.4.0 Berger-Sehgal (2009) and GENIE 2.8.0 Rein-Sehgal (2007) model predictions

    Measurements of the ΜΌ and ÎœÂŻÎŒ -induced coherent charged pion production cross sections on C12 by the T2K experiment

    Get PDF
    We report an updated measurement of the Îœ ÎŒ -induced, and the first measurement of the ÂŻ Îœ ÎŒ -induced coherent charged pion production cross section on 12 C nuclei in the Tokai-to-Kamioka experiment. This is measured in a restricted region of the final-state phase space for which p ÎŒ , π > 0.2     GeV , cos ( Ξ ÎŒ ) > 0.8 and cos ( Ξ π ) > 0.6 , and at a mean (anti)neutrino energy of 0.85 GeV using the T2K near detector. The measured Îœ ÎŒ charged current coherent pion production flux-averaged cross section on 12 C is ( 2.98 ± 0.37 ( stat ) ± 0.31 ( syst ) + 0.49 − 0.00 ( Q 2   model ) ) × 10 − 40     cm 2 . The new measurement of the ÂŻ Îœ ÎŒ -induced cross section on 12 C is ( 3.05 ± 0.71 ( stat ) ± 0.39 ( syst ) + 0.74 − 0.00 ( Q 2   model ) ) × 10 − 40     cm 2 . The results are compatible with both the NEUT 5.4.0 Berger-Sehgal (2009) and GENIE 2.8.0 Rein-Sehgal (2007) model predictions

    Scintillator ageing of the T2K near detectors from 2010 to 2021

    Get PDF
    The T2K experiment widely uses plastic scintillator as a target for neutrino interactions and an active medium for the measurement of charged particles produced in neutrino interactions at its near detector complex. Over 10 years of operation the measured light yield recorded by the scintillator based subsystems has been observed to degrade by 0.9–2.2% per year. Extrapolation of the degradation rate through to 2040 indicates the recorded light yield should remain above the lower threshold used by the current reconstruction algorithms for all subsystems. This will allow the near detectors to continue contributing to important physics measurements during the T2K-II and Hyper-Kamiokande eras. Additionally, work to disentangle the degradation of the plastic scintillator and wavelength shifting fibres shows that the reduction in light yield can be attributed to the ageing of the plastic scintillator. The long component of the attenuation length of the wavelength shifting fibres was observed to degrade by 1.3–5.4% per year, while the short component of the attenuation length did not show any conclusive degradation
    • 

    corecore