123 research outputs found

    Blockchain: A Panacea for Trust Challenges In Public Services? A Socio-technical Perspective

    Get PDF
    Trust in corporations, governments and public services has been steadily declining over the last few decades. L ack of transparency and auditability has been a key driver for this decline. Blockchain technology has been co mmended as a solution that can h elp with disintermediat ion and fill ing the consistently increasing trust challenges faced by the corporate and public s ector s . Public services are seeking solutions that can help establish trust and increase transpar e n c y with its citizens and b usinesses are undertaking extensive business analysis to determine the need and effectiveness of blockchain - like platforms as the basis for transforming their existing platforms. Due to the decisive nature, most of the analysis results thus indicate that if a trusted third party is an option, then blockchain should not be used. Here we highlight the challenges a nd opportunities of establishing trust and how blockchain technology can help public services bridge the trust gap with its citizens . We argue that all information technology systems rely on a suite of technologies , thus blockchain should be added to the c urrent technology stack rather than taking an ‘ all or nothing ’ approach. We also argue that analysing the effectiveness of futuristic technology like blockchain with industrial age methodology and mindset may limit th e realisation of its impact on society and economy . Therefore, we propose to take a heuristic approach , where different properties of blockchain technology need to be mapped against different aspects of current business process with a futuristic view in mind. Taking Com panies House – a governme nt organisation that holds over 4 million UK - based companies ’ records – as an example, we demonstrate how certain business processes in Companies House can benefit from adapting a blockchain - based solution

    Public service operational efficiency and blockchain - A case study of Companies House, UK

    Get PDF
    Despite the increasing interest and exploration of the use of blockchain technology in public service organisations (PSOs), academic understanding of its transformative impact on the operational excellence of PSOs remains limited. This study adopts an action design science research methodology to develop a proof of concept (POC) blockchain based application for Companies House, a government agency that is registering companies across UK. The application addresses the operational challenges of Companies House as well as issues citizens face when accessing its services. We draw from the public value framework proposed by Twizeyimana and Andersson (2019) and demonstrate the significance of the emerging blockchain technology in relation to their democratic practices based on six dimensions. We further discuss the related challenges and barriers for its implementation and evaluate the POC with the stakeholders of Companies House. We also present an illustrative case study, where we explored the appropriateness of the POC in relation to the draft legislation, “Registration of Overseas Entities and Beneficial Owners” (ROEBO) bill which proposes the introduction of a register of the beneficial owners of overseas legal entities that own real estate in the UK. Our research is one of the few studies that will provide in-depth empirical insights about the relationship between blockchain and operational excellence of PSOs

    Role of mass drug administration in elimination of Plasmodium falciparum malaria: a consensus modelling study

    Get PDF
    Background Mass drug administration for elimination of Plasmodium falciparum malaria is recommended by WHO in some settings. We used consensus modelling to understand how to optimise the effects of mass drug administration in areas with low malaria transmission. Methods We collaborated with researchers doing field trials to establish a standard intervention scenario and standard transmission setting, and we input these parameters into four previously published models. We then varied the number of rounds of mass drug administration, coverage, duration, timing, importation of infection, and pre-administration transmission levels. The outcome of interest was the percentage reduction in annual mean prevalence of P falciparum parasite rate as measured by PCR in the third year after the final round of mass drug administration. Findings The models predicted differing magnitude of the effects of mass drug administration, but consensus answers were reached for several factors. Mass drug administration was predicted to reduce transmission over a longer timescale than accounted for by the prophylactic effect alone. Percentage reduction in transmission was predicted to be higher and last longer at lower baseline transmission levels. Reduction in transmission resulting from mass drug administration was predicted to be temporary, and in the absence of scale-up of other interventions, such as vector control, transmission would return to pre-administration levels. The proportion of the population treated in a year was a key determinant of simulated effectiveness, irrespective of whether people are treated through high coverage in a single round or new individuals are reached by implementation of several rounds. Mass drug administration was predicted to be more effective if continued over 2 years rather than 1 year, and if done at the time of year when transmission is lowest. Interpretation Mass drug administration has the potential to reduce transmission for a limited time, but is not an effective replacement for existing vector control. Unless elimination is achieved, mass drug administration has to be repeated regularly for sustained effect

    Mathematical Modeling of Malaria Infection with Innate and Adaptive Immunity in Individuals and Agent-Based Communities

    Get PDF
    Background: Agent-based modeling of Plasmodium falciparum infection offers an attractive alternative to the conventional Ross-Macdonald methodology, as it allows simulation of heterogeneous communities subjected to realistic transmission (inoculation patterns). Methodology/Principal Findings: We developed a new, agent based model that accounts for the essential in-host processes: parasite replication and its regulation by innate and adaptive immunity. The model also incorporates a simplified version of antigenic variation by Plasmodium falciparum. We calibrated the model using data from malaria-therapy (MT) studies, and developed a novel calibration procedure that accounts for a deterministic and a pseudo-random component in the observed parasite density patterns. Using the parasite density patterns of 122 MT patients, we generated a large number of calibrated parameters. The resulting data set served as a basis for constructing and simulating heterogeneous agent-based (AB) communities of MT-like hosts. We conducted several numerical experiments subjecting AB communities to realistic inoculation patterns reported from previous field studies, and compared the model output to the observed malaria prevalence in the field. There was overall consistency, supporting the potential of this agent-based methodology to represent transmission in realistic communities. Conclusions/Significance: Our approach represents a novel, convenient and versatile method to model Plasmodiu

    Hyperparasitaemia and low dosing are an important source of anti-malarial drug resistance

    Get PDF
    BACKGROUND: Preventing the emergence of anti-malarial drug resistance is critical for the success of current malaria elimination efforts. Prevention strategies have focused predominantly on qualitative factors, such as choice of drugs, use of combinations and deployment of multiple first-line treatments. The importance of anti-malarial treatment dosing has been underappreciated. Treatment recommendations are often for the lowest doses that produce "satisfactory" results. METHODS: The probability of de-novo resistant malaria parasites surviving and transmitting depends on the relationship between their degree of resistance and the blood concentration profiles of the anti-malarial drug to which they are exposed. The conditions required for the in-vivo selection of de-novo emergent resistant malaria parasites were examined and relative probabilities assessed. RESULTS: Recrudescence is essential for the transmission of de-novo resistance. For rapidly eliminated anti-malarials high-grade resistance can arise from a single drug exposure, but low-grade resistance can arise only from repeated inadequate treatments. Resistance to artemisinins is, therefore, unlikely to emerge with single drug exposures. Hyperparasitaemic patients are an important source of de-novo anti-malarial drug resistance. Their parasite populations are larger, their control of the infection insufficient, and their rates of recrudescence following anti-malarial treatment are high. As use of substandard drugs, poor adherence, unusual pharmacokinetics, and inadequate immune responses are host characteristics, likely to pertain to each recurrence of infection, a small subgroup of patients provides the particular circumstances conducive to de-novo resistance selection and transmission. CONCLUSION: Current dosing recommendations provide a resistance selection opportunity in those patients with low drug levels and high parasite burdens (often children or pregnant women). Patients with hyperparasitaemia who receive outpatient treatments provide the greatest risk of selecting de-novo resistant parasites. This emphasizes the importance of ensuring that only quality-assured anti-malarial combinations are used, that treatment doses are optimized on the basis of pharmacodynamic and pharmacokinetic assessments in the target populations, and that patients with heavy parasite burdens are identified and receive sufficient treatment to prevent recrudescence

    Making maps of cosmic microwave background polarization for B-mode studies: The POLARBEAR example

    Get PDF
    Analysis of cosmic microwave background (CMB) datasets typically requires some filtering of the raw time-ordered data. For instance, in the context of ground-based observations, filtering is frequently used to minimize the impact of low frequency noise, atmospheric contributions and/or scan synchronous signals on the resulting maps. In this work we have explicitly constructed a general filtering operator, which can unambiguously remove any set of unwanted modes in the data, and then amend the map-making procedure in order to incorporate and correct for it. We show that such an approach is mathematically equivalent to the solution of a problem in which the sky signal and unwanted modes are estimated simultaneously and the latter are marginalized over. We investigated the conditions under which this amended map-making procedure can render an unbiased estimate of the sky signal in realistic circumstances. We then discuss the potential implications of these observations on the choice of map-making and power spectrum estimation approaches in the context of B-mode polarization studies. Specifically, we have studied the effects of time-domain filtering on the noise correlation structure in the map domain, as well as impact it may haveon the performance of the popular pseudo-spectrum estimators. We conclude that although maps produced by the proposed estimators arguably provide the most faithful representation of the sky possible given the data, they may not straightforwardly lead to the best constraints on the power spectra of the underlying sky signal and special care may need to be taken to ensure this is the case. By contrast, simplified map-makers which do not explicitly correct for time-domain filtering, but leave it to subsequent steps in the data analysis, may perform equally well and be easier and faster to implement. We focused on polarization-sensitive measurements targeting the B-mode component of the CMB signal and apply the proposed methods to realistic simulations based on characteristics of an actual CMB polarization experiment, POLARBEAR. Our analysis and conclusions are however more generally applicable. \ua9 ESO, 2017

    International AIDS Society global scientific strategy: towards an HIV cure 2016

    Get PDF
    Antiretroviral therapy is not curative. Given the challenges in providing lifelong therapy to a global population of more than 35 million people living with HIV, there is intense interest in developing a cure for HIV infection. The International AIDS Society convened a group of international experts to develop a scientific strategy for research towards an HIV cure. This Perspective summarizes the group's strategy
    corecore