9 research outputs found

    Methylation matters: binding of Ets-1 to the demethylated Foxp3 gene contributes to the stabilization of Foxp3 expression in regulatory T cells

    Get PDF
    The forkhead-box protein P3 (Foxp3) is a key transcription factor for the development and suppressive activity of regulatory T cells (Tregs), a T cell subset critically involved in the maintenance of self-tolerance and prevention of over-shooting immune responses. However, the transcriptional regulation of Foxp3 expression remains incompletely understood. We have previously shown that epigenetic modifications in the CpG-rich Treg-specific demethylated region (TSDR) in the Foxp3 locus are associated with stable Foxp3 expression. We now demonstrate that the methylation state of the CpG motifs within the TSDR controls its transcriptional activity rather than a Treg-specific transcription factor network. By systematically mutating every CpG motif within the TSDR, we could identify four CpG motifs, which are critically determining the transcriptional activity of the TSDR and which serve as binding sites for essential transcription factors, such as CREB/ATF and NF-ÎşB, which have previously been shown to bind to this element. The transcription factor Ets-1 was here identified as an additional molecular player that specifically binds to the TSDR in a demethylation-dependent manner in vitro. Disruption of the Ets-1 binding sites within the TSDR drastically reduced its transcriptional enhancer activity. In addition, we found Ets-1 bound to the demethylated TSDR in ex vivo isolated Tregs, but not to the methylated TSDR in conventional CD4+ T cells. We therefore propose that Ets-1 is part of a larger protein complex, which binds to the TSDR only in its demethylated state, thereby restricting stable Foxp3 expression to the Treg lineage

    Erythroid-Specific Transcriptional Changes in PBMCs from Pulmonary Hypertension Patients

    Get PDF
    Gene expression profiling of peripheral blood mononuclear cells (PBMCs) is a powerful tool for the identification of surrogate markers involved in disease processes. The hypothesis tested in this study was that chronic exposure of PBMCs to a hypertensive environment in remodeled pulmonary vessels would be reflected by specific transcriptional changes in these cells.The transcript profiles of PBMCs from 30 idiopathic pulmonary arterial hypertension patients (IPAH), 19 patients with systemic sclerosis without pulmonary hypertension (SSc), 42 scleroderma-associated pulmonary arterial hypertensio patients (SSc-PAH), and 8 patients with SSc complicated by interstitial lung disease and pulmonary hypertension (SSc-PH-ILD) were compared to the gene expression profiles of PBMCs from 41 healthy individuals. Multiple gene expression signatures were identified which could distinguish various disease groups from controls. One of these signatures, specific for erythrocyte maturation, is enriched specifically in patients with PH. This association was validated in multiple published datasets. The erythropoiesis signature was strongly correlated with hemodynamic measures of increasing disease severity in IPAH patients. No significant correlation of the same type was noted for SSc-PAH patients, this despite a clear signature enrichment within this group overall. These findings suggest an association of the erythropoiesis signature in PBMCs from patients with PH with a variable presentation among different subtypes of disease.In PH, the expansion of immature red blood cell precursors may constitute a response to the increasingly hypoxic conditions prevalent in this syndrome. A correlation of this erythrocyte signature with more severe hypertension cases may provide an important biomarker of disease progression

    Sediment source fingerprinting: benchmarking recent outputs, remaining challenges and emerging themes

    Get PDF
    Abstract: Purpose: This review of sediment source fingerprinting assesses the current state-of-the-art, remaining challenges and emerging themes. It combines inputs from international scientists either with track records in the approach or with expertise relevant to progressing the science. Methods: Web of Science and Google Scholar were used to review published papers spanning the period 2013–2019, inclusive, to confirm publication trends in quantities of papers by study area country and the types of tracers used. The most recent (2018–2019, inclusive) papers were also benchmarked using a methodological decision-tree published in 2017. Scope: Areas requiring further research and international consensus on methodological detail are reviewed, and these comprise spatial variability in tracers and corresponding sampling implications for end-members, temporal variability in tracers and sampling implications for end-members and target sediment, tracer conservation and knowledge-based pre-selection, the physico-chemical basis for source discrimination and dissemination of fingerprinting results to stakeholders. Emerging themes are also discussed: novel tracers, concentration-dependence for biomarkers, combining sediment fingerprinting and age-dating, applications to sediment-bound pollutants, incorporation of supportive spatial information to augment discrimination and modelling, aeolian sediment source fingerprinting, integration with process-based models and development of open-access software tools for data processing. Conclusions: The popularity of sediment source fingerprinting continues on an upward trend globally, but with this growth comes issues surrounding lack of standardisation and procedural diversity. Nonetheless, the last 2 years have also evidenced growing uptake of critical requirements for robust applications and this review is intended to signpost investigators, both old and new, towards these benchmarks and remaining research challenges for, and emerging options for different applications of, the fingerprinting approach

    Characterization of the Binding Behavior of Specific Cobalt and Nickel Ion-Binding Peptides Identified by Phage Surface Display

    No full text
    In recent years, the application focus of phage surface display (PSD) technology has been extended to the identification of metal ion-selective peptides. In previous studies, two phage clones—a nickel-binding one with the peptide motif CNAKHHPRCGGG and a cobalt-binding one with the peptide motif CTQMLGQLCGGG—were isolated, and their binding ability to metal-loaded NTA agarose beads was investigated. Here, the free cyclic peptides are characterized by UV/VIS spectroscopy with respect to their binding capacity for the respective target ion and in crossover experiments for the other ion by isothermal titration calorimetry (ITC) in different buffer systems. This revealed differences in selectivity and affinity. The cobalt-specific peptide is very sensitive to different buffers; it has a 20-fold higher affinity for cobalt and nickel under suitable conditions. The nickel-specific peptide binds more moderately and robustly in different buffers but only selectively to nickel

    Characterization of the Binding Behavior of Specific Cobalt and Nickel Ion-Binding Peptides Identified by Phage Surface Display

    No full text
    In recent years, the application focus of phage surface display (PSD) technology has been extended to the identification of metal ion-selective peptides. In previous studies, two phage clones—a nickel-binding one with the peptide motif CNAKHHPRCGGG and a cobalt-binding one with the peptide motif CTQMLGQLCGGG—were isolated, and their binding ability to metal-loaded NTA agarose beads was investigated. Here, the free cyclic peptides are characterized by UV/VIS spectroscopy with respect to their binding capacity for the respective target ion and in crossover experiments for the other ion by isothermal titration calorimetry (ITC) in different buffer systems. This revealed differences in selectivity and affinity. The cobalt-specific peptide is very sensitive to different buffers; it has a 20-fold higher affinity for cobalt and nickel under suitable conditions. The nickel-specific peptide binds more moderately and robustly in different buffers but only selectively to nickel

    Photobiomodulation—Underlying Mechanism and Clinical Applications

    No full text
    The purpose of this study is to explore the possibilities for the application of laser therapy in medicine and dentistry by analyzing lasers’ underlying mechanism of action on different cells, with a special focus on stem cells and mechanisms of repair. The interest in the application of laser therapy in medicine and dentistry has remarkably increased in the last decade. There are different types of lasers available and their usage is well defined by different parameters, such as: wavelength, energy density, power output, and duration of radiation. Laser irradiation can induce a photobiomodulatory (PBM) effect on cells and tissues, contributing to a directed modulation of cell behaviors, enhancing the processes of tissue repair. Photobiomodulation (PBM), also known as low-level laser therapy (LLLT), can induce cell proliferation and enhance stem cell differentiation. Laser therapy is a non-invasive method that contributes to pain relief and reduces inflammation, parallel to the enhanced healing and tissue repair processes. The application of these properties was employed and observed in the treatment of various diseases and conditions, such as diabetes, brain injury, spinal cord damage, dermatological conditions, oral irritation, and in different areas of dentistry

    Integrative analysis of 111 reference human epigenomes

    No full text
    corecore