341 research outputs found

    Buckling of Cylindrical Shells of Variable Thickness, Loaded by External Uniform Pressure

    Get PDF
    From the mathematical standpoint one has a partial  differential equation with variable coefficients. Perturbation procedure gives the possibilityfor an analytical solution of this eigenvalue problem. Self-adjoint equations and PadΓ© approximants are used for improving the obtained results

    The subpopulation of microglia sensitive to neurotransmitters/neurohormones is modulated by stimulation with LPS, interferon-Ξ³, and IL-4

    Get PDF
    Recently, neurotransmitters/neurohormones have been identified as factors controlling the function of microglia, the immune competent cells of the central nervous system. In this study, we compared the responsiveness of microglia to neurotransmitters/neurohormones. We freshly isolated microglia from healthy adult C57Bl/6 mice and found that only a small fraction (1-20%) responded to the application of endothelin, histamine, substance P, serotonin, galanin, somatostatin, angiotensin II, vasopressin, neurotensin, dopamine, or nicotine. In cultured microglia from neonatal and adult mice, a similarly small population of cells responded to these neurotransmitters/neurohormones. To induce a proinflammatory phenotype, we applied lipopolysaccaride (LPS) or interferon-gamma (IFN-{gamma}) to the cultures for 24 h. Several of the responding populations increased; however, there was no uniform pattern when comparing adult with neonatal microglia or LPS with IFN-{gamma} treatment. IL-4 as an anti-inflammatory substance increased the histamine-, substance P-, and somatostatin-sensitive populations only in microglia from adult, but not in neonatal cells. We also found that the expression of different receptors was not strongly correlated, indicating that there are many different populations of microglia with a distinct set of receptors. Our results demonstrate that microglial cells are a heterogeneous population with respect to their sensitivity to neurotransmitters/neurohormones and that they are more responsive in defined activation states

    Mitochondrial exchanger NCLX plays a major role in the intracellular Ca(2+) signaling, gliotransmission, and proliferation of astrocytes

    Get PDF
    Mitochondria not only provide cells with energy, but are central to Ca(2+) signaling. Powered by the mitochondrial membrane potential, Ca(2+) enters the mitochondria and is released into the cytosol through a mitochondrial Na(+)/Ca(2+) exchanger. We established that NCLX, a newly discovered mitochondrial Na(+)/Ca(2+) exchanger, is expressed in astrocytes isolated from mice of either sex. Immunoblot analysis of organellar fractions showed that the location of NCLX is confined to mitochondria. Using pericam-based mitochondrial Ca(2+) imaging and NCLX inhibition either by siRNA or by the pharmacological blocker CGP37157, we demonstrated that NCLX is responsible for mitochondrial Ca(2+) extrusion. Suppression of NCLX function altered cytosolic Ca(2+) dynamics in astrocytes and this was mediated by a strong effect of NCLX activity on Ca(2+) influx via store-operated entry. Furthermore, Ca(2+) influx through the store-operated Ca(2+) entry triggered strong, whereas ER Ca(2+) release triggered only modest mitochondrial Ca(2+) transients, indicating that the functional cross talk between the plasma membrane and mitochondrial domains is particularly strong in astrocytes. Finally, silencing of NCLX expression significantly reduced Ca(2+)-dependent processes in astrocytes (i.e., exocytotic glutamate release, in vitro wound closure, and proliferation), whereas Ca(2+) wave propagation was not affected. Therefore, NCLX, by meditating astrocytic mitochondrial Na(+)/Ca(2+) exchange, links between mitochondria and plasma membrane Ca(2+) signaling, thereby modulating cytoplasmic Ca(2+) transients required to control a diverse array of astrocyte functions

    Therapeutic effect of magnesium sulfate on the state of the autonomic nervous system in patients with meningoencephalitis

    Get PDF
    The study included an experimental group of 64 patients with meningoencephalitis with moderate to severe course, aged 18-60 years. The patients’ score according to the Glasgow Coma Scale was higher than 8. The group consisted of 2 subgroups of 32 patients: (1) magnesium sulfate was added to standard treatment and the patients’ condition was being assessed in 2 hours after every administration of this medicine, and (2) the patients of this subgroup have received standard treatment without magnesium sulfate and have been examined in the same way. Magnesium sulfate was administered by intravenous infusion of 20 ml of 25% solution (single dose 5000 mg) diluted in 400 ml of 10% solution of glucose. Besides common methods of examination, the authors have used photoplethysmography and assessed autonomic nervous system reflexes and parameters, blood pressure components, and specific ECG parameters. In comparison with the standard therapy, adding magnesium sulfate into treatment resulted in more pronounced decrudescence related with the somatic and autonomic nervous system, namely: meningeal, encephalitis syndrome, respiratory, cardiovascular, intestinal dysfunctions. Magnesium sulfate favors decrease of sympathicotonia and increase of vagotonia what especially declares itself through reducing blood pressure and heart rate. It is reasonable to introduce magnesium sulfate in treatment protocols for meningoencephalitis

    Spontaneous Ca(2+) transients in mouse microglia

    Get PDF
    Microglia are the resident immune cells in the central nervous system and many of their physiological functions are known to be linked to intracellular calcium (Ca2+) signaling. Here we show that isolated and purified mouse microglia-either freshly or cultured-display spontaneous and transient Ca2+ elevations lasting for around ten to twenty seconds and occurring at frequencies of around five to ten events per hour and cell. The events were absent after depletion of internal Ca2+ stores, by phospholipase C (PLC) inhibition or blockade of inositol-1,4,5-trisphosphate receptors (IP3Rs), but not by removal of extracellular Ca2+, indicating that Ca2+ is released from endoplasmic reticulum intracellular stores. We furthermore provide evidence that autocrine ATP release and subsequent activation of purinergic P2Y receptors is not the trigger for these events. Spontaneous Ca2+ transients did also occur after stimulation with Lipopolysaccharide (LPS) and in glioma-associated microglia, but their kinetics differed from control conditions. We hypothesize that spontaneous Ca2+ transients reflect aspects of cellular homeostasis that are linked to regular and patho-physiological functions of microglia

    Radio-frequency discharges in Oxygen. Part 1: Modeling

    Full text link
    In this series of three papers we present results from a combined experimental and theoretical effort to quantitatively describe capacitively coupled radio-frequency discharges in oxygen. The particle-in-cell Monte-Carlo model on which the theoretical description is based will be described in the present paper. It treats space charge fields and transport processes on an equal footing with the most important plasma-chemical reactions. For given external voltage and pressure, the model determines the electric potential within the discharge and the distribution functions for electrons, negatively charged atomic oxygen, and positively charged molecular oxygen. Previously used scattering and reaction cross section data are critically assessed and in some cases modified. To validate our model, we compare the densities in the bulk of the discharge with experimental data and find good agreement, indicating that essential aspects of an oxygen discharge are captured.Comment: 11 pages, 10 figure

    Comparative study of semiclassical approaches to quantum dynamics

    Full text link
    Quantum states can be described equivalently by density matrices, Wigner functions or quantum tomograms. We analyze the accuracy and performance of three related semiclassical approaches to quantum dynamics, in particular with respect to their numerical implementation. As test cases, we consider the time evolution of Gaussian wave packets in different one-dimensional geometries, whereby tunneling, resonance and anharmonicity effects are taken into account. The results and methods are benchmarked against an exact quantum mechanical treatment of the system, which is based on a highly efficient Chebyshev expansion technique of the time evolution operator.Comment: 32 pages, 8 figures, corrected typos and added references; version as publishe

    ΠŸΠ ΠžΠ‘Π›Π•ΠœΠΠžβ€“ΠžΠ Π†Π„ΠΠ’ΠžΠ’ΠΠΠ ΠžΠ‘Π’Π†Π’Π

    Get PDF
    The article for the purpose of effective integration into the European educational space, adduces the problems of modern education inUkraine. It is noted that the effective professional formation of a student of Medical University is possible into accouat the characterogical, etnocultural features of personality and from the development of the country.Π’ статті, Π· ΠΌΠ΅Ρ‚ΠΎΡŽ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡ— Ρ–Π½Ρ‚Π΅Π³Ρ€Π°Ρ†Ρ–Ρ— Π² Π„Π²Ρ€ΠΎΠΏΠ΅ΠΉΡΡŒΠΊΠΈΠΉ освітній простір,Β  окрСслСні ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΈ сучасної освіти Π² Π£ΠΊΡ€Π°Ρ—Π½Ρ–. Π’ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ, Ρ‰ΠΎ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Π΅ профСсійнС формування студСнта ΠΌΠ΅Π΄ΠΈΡ‡Π½ΠΎΠ³ΠΎ унівСрситСту ΠΌΠΎΠΆΠ»ΠΈΠ²Π΅ Π· врахуванням Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ…, Π΅Ρ‚Π½ΠΎΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΈΡ… особливостСй особистості Ρ‚Π° Ρ” Π½Π΅Π²Ρ–Π΄Ρ€ΠΈΠ²Π½ΠΈΠΌ Π²Ρ–Π΄ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ ΠΊΡ€Π°Ρ—Π½ΠΈ

    On the Wake Structure in Streaming Complex Plasmas

    Get PDF
    The theoretical description of complex (dusty) plasmas requires multiscale concepts that adequately incorporate the correlated interplay of streaming electrons and ions, neutrals, and dust grains. Knowing the effective dust-dust interaction, the multiscale problem can be effectively reduced to a one-component plasma model of the dust subsystem. The goal of the present publication is a systematic evaluation of the electrostatic potential distribution around a dust grain in the presence of a streaming plasma environment by means of two complementary approaches: (i) a high precision computation of the dynamically screened Coulomb potential from the dynamic dielectric function, and (ii) full 3D particle-in-cell simulations, which self-consistently include dynamical grain charging and non-linear effects. The applicability of these two approaches is addressed

    ΠŸΠΎΠ»ΡΡ€ΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½ΠΎ-модуляционная ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° опрСдСлСния Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ мСханичСских напряТСний Π² сапфировых оптичСских ΠΎΠΊΠ½Π°Ρ…

    Get PDF
    ΠŸΡ€ΠΈ Π²ΠΈΡ€ΠΎΡ‰ΡƒΠ²Π°Π½Π½Ρ– Π·Π»ΠΈΠ²ΠΊΡ–Π² монокристалічного сапфіру Π² Π½ΡŒΠΎΠΌΡƒ Π²ΠΈΠ½ΠΈΠΊΠ°ΡŽΡ‚ΡŒ Π΄Π΅Ρ„Π΅ΠΊΡ‚ΠΈ Ρƒ вигляді ΠΌΡ–ΠΊΡ€ΠΎΠ±ΡƒΠ»ΡŒΠ±Π°ΡˆΠΎΠΊ, Π³Ρ€Π°Π½ΠΈΡ†ΡŒ Π±Π»ΠΎΠΊΡ–Π² Ρ– Π·ΡƒΠΌΠΎΠ²Π»Π΅Π½Ρ– Π½ΠΈΠΌΠΈ ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½Ρ– напруТСння, які суттєво Π²ΠΏΠ»ΠΈΠ²Π°ΡŽΡ‚ΡŒ Π½Π° Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½Ρ– властивості кристалу. ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽ якості сапфірових структур Π²ΠΈΡ€Ρ–ΡˆΡƒΡŽΡ‚ΡŒ Π±Π°Π³Π°Ρ‚ΡŒΠΌΠ° способами, Π°Π»Π΅ Π²ΠΎΠ½ΠΈ Π½Π΅ Ρ” Π΄ΠΎΡΡ‚Π°Ρ‚Π½ΡŒΠΎ Ρ‡ΡƒΡ‚Π»ΠΈΠ²ΠΈΠΌΠΈ для ΠΏΠΎΡ‚Ρ€Π΅Π± сучасної ΠΎΠΏΡ‚ΠΈΠΊΠΈ Ρ‚Π° ΠΌΡ–ΠΊΡ€ΠΎΠ΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Ρ–ΠΊΠΈ, Π°Π±ΠΎ Ρ” складними Ρƒ використанні (Ρ€Π΅Π½Ρ‚Π³Π΅Π½Ρ–Π²ΡΡŒΠΊΡ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ). Π’Ρ€Π°Π΄ΠΈΡ†Ρ–ΠΉΠ½ΠΈΠΉ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ Π²Π½ΡƒΡ‚Ρ€Ρ–ΡˆΠ½Ρ–Ρ… ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΈΡ… Π½Π°ΠΏΡ€ΡƒΠΆΠ΅Π½ΡŒ Π·Π΄Ρ–ΠΉΡΠ½ΡŽΡŽΡ‚ΡŒ Π²Ρ–Π·ΡƒΠ°Π»ΡŒΠ½ΠΎ Π½Π° полярископі-поляримСтрі ПКБ-250, Π² основу якого ΠΏΠΎΠΊΠ»Π°Π΄Π΅Π½ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΏΠΎΠ΄Π²Ρ–ΠΉΠ½ΠΎΠ³ΠΎ промСнСзаломлСння Π‘Π΅Π½Π°Ρ€ΠΌΠΎΠ½Π°. ΠŸΡ€ΠΎΡ‚Π΅ Ρ‚Π΅Ρ…Π½Ρ–Ρ‡Π½Ρ– моТливості Ρ†ΡŒΠΎΠ³ΠΎ Ρ‚Ρ€Π°Π΄ΠΈΡ†Ρ–ΠΉΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Π½Π΅ Π·Π΄Π°Ρ‚Π½Ρ– Π²ΠΈΠΊΠΎΠ½ΡƒΠ²Π°Ρ‚ΠΈ високочутливий ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΈΠΉ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ Π·Ρ€Π°Π·ΠΊΡ–Π² монокристалів сапфіру Π· мікронапруТСннями. Π’ΠΎΠΌΡƒ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡŽ Π·Π°Π΄Π°Ρ‡Π΅ΡŽ сучасного приладобудування Ρ” розроблСння Π½ΠΎΠ²ΠΈΡ… високочутливих ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π² Ρ‚Π΅Ρ…Π½Ρ–Ρ‡Π½ΠΎΡ— діагностики Ρ‚Π° Π½Π΅Ρ€ΡƒΠΉΠ½Ρ–Π²Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽ якості Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ Ρ–Π· сапфіру. Автори Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ дослідТували ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ використання ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ модуляційної поляримСтрії для Π²ΠΈΡ€Ρ–ΡˆΠ΅Π½Π½Ρ поставлСної Π·Π°Π΄Π°Ρ‡Ρ–. Однак стан поляризації як характСристики Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΠ²Π°Π½Π½Ρ ΠΌΠ°Ρ” Π· огляду Π½Π° Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–Π°Π»ΡŒΠ½Ρƒ ΡΠΏΠ΅ΠΊΡ‚Ρ€ΠΎΡΠΊΠΎΠΏΡ–ΡŽ суттєву Π²Ρ–Π΄ΠΌΡ–Π½Π½Ρ–ΡΡ‚ΡŒ Π²Ρ–Π΄ Ρ–Π½ΡˆΠΈΡ… способів модуляції. Π’ΠΎΠ½Π° полягає, ΠΏΠ΅Ρ€Ρˆ Π·Π° всС, Ρƒ Ρ‚ΠΎΠΌΡƒ, Ρ‰ΠΎ поляризація, як просторова характСристика Ρ…Π²ΠΈΠ»Ρ–, Π·Π°Π»Π΅ΠΆΠΈΡ‚ΡŒ Π²Ρ–Π΄ сукупності Π·Π½Π°Ρ‡Π΅Π½ΡŒ – ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° МаксвСла-ДТонса Π°Π±ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Бтокса. ΠžΡ‚ΠΆΠ΅, Π½Π° Π²Ρ–Π΄ΠΌΡ–Π½Ρƒ Π²Ρ–Π΄ модуляцій Ρ–Π½ΡˆΠΈΡ… Ρ„Ρ–Π·ΠΈΡ‡Π½ΠΈΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½, Ρ‰ΠΎ ΠΎΠΏΠ΅Ρ€ΡƒΡŽΡ‚ΡŒ Ρ–Π· Ρ”Π΄ΠΈΠ½ΠΈΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ, поляризаційна модуляція (ПМ) Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡ”Ρ‚ΡŒΡΡ Π΄Π²ΠΎΠΌΡ–Ρ€Π½ΠΈΠΌ Π²ΠΏΠ»ΠΈΠ²ΠΎΠΌ Π½Π° Ρ…Π²ΠΈΠ»ΡŽ. ΠœΠ΅Ρ‚ΠΎΡŽ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ Π±ΡƒΠ»ΠΎ розроблСння ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ визначСння Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΈΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ Π²Π½ΡƒΡ‚Ρ€Ρ–ΡˆΠ½Ρ–Ρ… ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΈΡ… Π½Π°ΠΏΡ€ΡƒΠΆΠ΅Π½ΡŒ Ρƒ Π»ΠΎΠΊΠ°Π»ΡŒΠ½ΠΈΡ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… сапфірових ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… Π²Ρ–ΠΊΠΎΠ½ Π·Π° допомогою модуляційної поляримСтрії. Π£ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ– ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ ΠΏΠΎΠ»Ρ–Ρ€ΠΎΠ²Π°Π½ΠΈΡ… Π·Ρ€Π°Π·ΠΊΡ–Π² сапфіру (Ρ‚ΠΈΠΏΡƒ ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… Π²Ρ–ΠΊΠΎΠ½) Π±ΡƒΠ»ΠΎ Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΡƒ визначСння Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΡŒ Π²Π½ΡƒΡ‚Ρ€Ρ–ΡˆΠ½Ρ–Ρ… ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΈΡ… Π½Π°ΠΏΡ€ΡƒΠΆΠ΅Π½ΡŒ Ρƒ ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Π°Ρ…, ΠΏΡ€ΠΎΠ·ΠΎΡ€ΠΈΡ… Π² ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΎΠΌΡƒ Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½Ρ– Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΠ²Π°Π½Π½Ρ Π½Π° основі модуляційної поляримСтрії. Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° виявити Π²Π½ΡƒΡ‚Ρ€Ρ–ΡˆΠ½Ρ– ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½Ρ– напруТСння Ρƒ сапфірових Π²Ρ–ΠΊΠ½Π°Ρ… Ρ– Π²ΠΈΠ·Π½Π°Ρ‡ΠΈΡ‚ΠΈ ΠΏΡ€ΠΈΡ‡ΠΈΠ½Ρƒ нСвідповідності дослідТСних Π·Ρ€Π°Π·ΠΊΡ–Π² Ρ‰ΠΎΠ΄ΠΎ Π²ΠΈΠΌΠΎΠ³ Π»Π°Π·Π΅Ρ€Π½ΠΈΡ… систСм. Π ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΡƒ Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ визначСння Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΈ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΡŒ Π²Π½ΡƒΡ‚Ρ€Ρ–ΡˆΠ½Ρ–Ρ… ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΈΡ… Π½Π°ΠΏΡ€ΡƒΠΆΠ΅Π½ΡŒ Ρƒ сапфірових ΠΎΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… Π²Ρ–ΠΊΠ½Π°Ρ… Π·Π° допомогою використання модуляційної поляримСтрії. ВстановлСно Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π» Ρƒ Π΄Π²ΠΎΠΌΡ–Ρ€Π½ΠΎΠΌΡƒ просторі Π²Π½ΡƒΡ‚Ρ€Ρ–ΡˆΠ½Ρ–Ρ… Π½Π°ΠΏΡ€ΡƒΠΆΠ΅Π½ΡŒ Ρƒ ΠΏΠΎΠ»Ρ–Ρ€ΠΎΠ²Π°Π½ΠΈΡ… Π·Ρ€Π°Π·ΠΊΠ°Ρ… сапфіру Ρ‚Π° Ρ—Ρ… Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½Ρ– значСння.There are defects such as microbubbles and boundaries of blocks appears in monocrystalline sapphire bars when they growing due to mechanical stresses that significantly affect the functional properties of the crystal. The quality control structures sapphire problem is solved in many ways, but they are not sufficiently sensitive to the needs of modern optics and microelectronics, or difficult to use (X-ray methods). Traditional control internal mechanical stresses perform visually on polariscope-polarimeter PKS-250, which is based on the double refraction Senarmona. However, the traditional method technical capability is not able to perform highly quantitative control samples of single crystal sapphire with mikrostresses. Therefore, the actual problem of modern instrumentation is the development of new highly sensitive methods of non-destructive quality diagnostics and control of parts of the sapphire. The authors of investigated the possibility of using the method of modulation polarimetry to solve this problem. However, this characteristic radiation as the state of polarization has in terms of differential spectroscopy substantial difference from other methods of modulation. It is, above all, that the polarization as spatial characteristics of the wave reflected set of values - the components of the vector Maxwell Jones or Stokes vector. Thus, unlike the modulation of other physical quantities that operate with a single parameter, polarization modulation (PM) is characterized by two-dimensional effects on the wave. The purpose of the work was the development of methods for determining the absolute values of the internal stresses in local points of sapphire optical windows using modulation polarimetry. The polished sapphire samples (such as optical windows) studies has developed a method of determining the absolute values of the internal stresses in materials transparent in the optical radiation through modulation polarimetry. The identification of internal stresses in the sapphire windows and determine the cause of inconsistency of the samples with the requirements of laser systems are enabled in this method. The determination of the absolute values of internal mechanical stresses in sapphire optical windows through the use of modulation polarimetry experimental method is developed. The distribution in two-dimensional space of internal stresses in polished sapphire samples and their absolute values are established.ΠŸΡ€ΠΈ Π²Ρ‹Ρ€Π°Ρ‰ΠΈΠ²Π°Π½ΠΈΠΈ слитков монокристалличСского сапфира Π² Π½Π΅ΠΌ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚ Π΄Π΅Ρ„Π΅ΠΊΡ‚Ρ‹ Π² Π²ΠΈΠ΄Π΅ ΠΌΠΈΠΊΡ€ΠΎΠΏΡƒΠ·Ρ‹Ρ€ΡŒΠΊΠΎΠ², Π³Ρ€Π°Π½ΠΈΡ† Π±Π»ΠΎΠΊΠΎΠ² ΠΈ обусловлСнныС ΠΈΠΌΠΈ мСханичСскиС напряТСния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ сущСствСнно Π²Π»ΠΈΡΡŽΡ‚ Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ свойства кристалла. ΠŸΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ контроля качСства сапфировых структур Ρ€Π΅ΡˆΠ°ΡŽΡ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ способами, Π½ΠΎ ΠΎΠ½ΠΈ Π½Π΅ достаточно Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ для Π½ΡƒΠΆΠ΄ соврСмСнной ΠΎΠΏΡ‚ΠΈΠΊΠΈ ΠΈ микроэлСктроники, ΠΈΠ»ΠΈ слоТны Π² использовании (рСнтгСновскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹). Π’Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… мСханичСских напряТСний ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡŽΡ‚ Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½ΠΎ Π½Π° полярископС-поляримСтрС ПКБ-250, Π² основу ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ лучСпрСломлСния Π‘Π΅Π½Π°Ρ€ΠΌΠΎΠ½Π°. Однако тСхничСскиС возмоТности этого Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π½Π΅ способны Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒ Π²Ρ‹ΡΠΎΠΊΠΎΡ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ количСствСнный ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² монокристаллов сапфира с микронапряТСниями. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ соврСмСнного приборостроСния являСтся Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π½ΠΎΠ²Ρ‹Ρ… Π²Ρ‹ΡΠΎΠΊΠΎΡ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² тСхничСской диагностики ΠΈ Π½Π΅Ρ€Π°Π·Ρ€ΡƒΡˆΠ°ΡŽΡ‰Π΅Π³ΠΎ контроля качСства Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ ΠΈΠ· сапфира. Авторы Ρ€Π°Π±ΠΎΡ‚Ρ‹ исслСдовали Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ использования ΠΌΠ΅Ρ‚ΠΎΠ΄Π° модуляционной поляримСтрии для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ поставлСнной Π·Π°Π΄Π°Ρ‡ΠΈ. Однако такая характСристика излучСния ΠΊΠ°ΠΊ состояниС поляризации, ΠΈΠΌΠ΅Π΅Ρ‚ с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ спСктроскопии сущСствСнноС ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ Π΄Ρ€ΡƒΠ³ΠΈΡ… способов модуляции. Она Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ, ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго, Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ поляризация, ΠΊΠ°ΠΊ пространствСнная характСристика Π²ΠΎΠ»Π½Ρ‹, выраТаСтся ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒΡŽ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ - ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°ΠΌΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° МаксвСлла-ДТонса ΠΈΠ»ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Бтокса. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ модуляций Π΄Ρ€ΡƒΠ³ΠΈΡ… физичСских Π²Π΅Π»ΠΈΡ‡ΠΈΠ½, ΠΎΠΏΠ΅Ρ€ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… с СдинствСнным ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ, поляризационная модуляция (ПМ) характСризуСтся Π΄Π²ΡƒΡ…ΠΌΠ΅Ρ€Π½Ρ‹ΠΌ влияниСм Π½Π° Π²ΠΎΠ»Π½Ρƒ. ЦСлью Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»Π° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ опрСдСлСния Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½Ρ‹Ρ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… мСханичСских напряТСний Π² Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… сапфировых оптичСских ΠΎΠΊΠΎΠ½ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ модуляционной поляримСтрии. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… исслСдований ΠΏΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² сапфира (Ρ‚ΠΈΠΏΠ° оптичСских ΠΎΠΊΠΎΠ½) Π±Ρ‹Π»Π° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° опрСдСлСния Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… мСханичСских напряТСний Π² ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°Ρ…, ΠΏΡ€ΠΎΠ·Ρ€Π°Ρ‡Π½Ρ‹Ρ… Π² оптичСском Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ излучСния Π½Π° основС модуляционной поляримСтрии. Разработанная ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠ΅ мСханичСскиС напряТСния Π² сапфировых ΠΎΠΊΠ½Π°Ρ… ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΡ‡ΠΈΠ½Ρƒ нСсоотвСтствия исслСдованных ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² трСбованиям Π»Π°Π·Π΅Ρ€Π½Ρ‹Ρ… систСм. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ опрСдСлСния Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… мСханичСских напряТСний Π² сапфировых оптичСских ΠΎΠΊΠ½Π°Ρ… Π·Π° счСт использования модуляционной поляримСтрии. УстановлСно распрСдСлСниС Π² Π΄Π²ΡƒΡ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… напряТСний Π² ΠΏΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… сапфира ΠΈ ΠΈΡ… Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½Ρ‹Π΅ значСния
    • …
    corecore