Quantum states can be described equivalently by density matrices, Wigner
functions or quantum tomograms. We analyze the accuracy and performance of
three related semiclassical approaches to quantum dynamics, in particular with
respect to their numerical implementation. As test cases, we consider the time
evolution of Gaussian wave packets in different one-dimensional geometries,
whereby tunneling, resonance and anharmonicity effects are taken into account.
The results and methods are benchmarked against an exact quantum mechanical
treatment of the system, which is based on a highly efficient Chebyshev
expansion technique of the time evolution operator.Comment: 32 pages, 8 figures, corrected typos and added references; version as
publishe