341 research outputs found
Buckling of Cylindrical Shells of Variable Thickness, Loaded by External Uniform Pressure
From the mathematical standpoint one has a partial differential equation with variable coefficients. Perturbation procedure gives the possibilityfor an analytical solution of this eigenvalue problem. Self-adjoint equations and PadΓ© approximants are used for improving the obtained results
The subpopulation of microglia sensitive to neurotransmitters/neurohormones is modulated by stimulation with LPS, interferon-Ξ³, and IL-4
Recently, neurotransmitters/neurohormones have been identified as factors controlling the function of microglia, the immune competent cells of the central nervous system. In this study, we compared the responsiveness of microglia to neurotransmitters/neurohormones. We freshly isolated microglia from healthy adult C57Bl/6 mice and found that only a small fraction (1-20%) responded to the application of endothelin, histamine, substance P, serotonin, galanin, somatostatin, angiotensin II, vasopressin, neurotensin, dopamine, or nicotine. In cultured microglia from neonatal and adult mice, a similarly small population of cells responded to these neurotransmitters/neurohormones. To induce a proinflammatory phenotype, we applied lipopolysaccaride (LPS) or interferon-gamma (IFN-{gamma}) to the cultures for 24 h. Several of the responding populations increased; however, there was no uniform pattern when comparing adult with neonatal microglia or LPS with IFN-{gamma} treatment. IL-4 as an anti-inflammatory substance increased the histamine-, substance P-, and somatostatin-sensitive populations only in microglia from adult, but not in neonatal cells. We also found that the expression of different receptors was not strongly correlated, indicating that there are many different populations of microglia with a distinct set of receptors. Our results demonstrate that microglial cells are a heterogeneous population with respect to their sensitivity to neurotransmitters/neurohormones and that they are more responsive in defined activation states
Mitochondrial exchanger NCLX plays a major role in the intracellular Ca(2+) signaling, gliotransmission, and proliferation of astrocytes
Mitochondria not only provide cells with energy, but are central to Ca(2+) signaling. Powered by the mitochondrial membrane potential, Ca(2+) enters the mitochondria and is released into the cytosol through a mitochondrial Na(+)/Ca(2+) exchanger. We established that NCLX, a newly discovered mitochondrial Na(+)/Ca(2+) exchanger, is expressed in astrocytes isolated from mice of either sex. Immunoblot analysis of organellar fractions showed that the location of NCLX is confined to mitochondria. Using pericam-based mitochondrial Ca(2+) imaging and NCLX inhibition either by siRNA or by the pharmacological blocker CGP37157, we demonstrated that NCLX is responsible for mitochondrial Ca(2+) extrusion. Suppression of NCLX function altered cytosolic Ca(2+) dynamics in astrocytes and this was mediated by a strong effect of NCLX activity on Ca(2+) influx via store-operated entry. Furthermore, Ca(2+) influx through the store-operated Ca(2+) entry triggered strong, whereas ER Ca(2+) release triggered only modest mitochondrial Ca(2+) transients, indicating that the functional cross talk between the plasma membrane and mitochondrial domains is particularly strong in astrocytes. Finally, silencing of NCLX expression significantly reduced Ca(2+)-dependent processes in astrocytes (i.e., exocytotic glutamate release, in vitro wound closure, and proliferation), whereas Ca(2+) wave propagation was not affected. Therefore, NCLX, by meditating astrocytic mitochondrial Na(+)/Ca(2+) exchange, links between mitochondria and plasma membrane Ca(2+) signaling, thereby modulating cytoplasmic Ca(2+) transients required to control a diverse array of astrocyte functions
Spontaneous Ca(2+) transients in mouse microglia
Microglia are the resident immune cells in the central nervous system and many of their physiological functions are known to be linked to intracellular calcium (Ca2+) signaling. Here we show that isolated and purified mouse microglia-either freshly or cultured-display spontaneous and transient Ca2+ elevations lasting for around ten to twenty seconds and occurring at frequencies of around five to ten events per hour and cell. The events were absent after depletion of internal Ca2+ stores, by phospholipase C (PLC) inhibition or blockade of inositol-1,4,5-trisphosphate receptors (IP3Rs), but not by removal of extracellular Ca2+, indicating that Ca2+ is released from endoplasmic reticulum intracellular stores. We furthermore provide evidence that autocrine ATP release and subsequent activation of purinergic P2Y receptors is not the trigger for these events. Spontaneous Ca2+ transients did also occur after stimulation with Lipopolysaccharide (LPS) and in glioma-associated microglia, but their kinetics differed from control conditions. We hypothesize that spontaneous Ca2+ transients reflect aspects of cellular homeostasis that are linked to regular and patho-physiological functions of microglia
Therapeutic effect of magnesium sulfate on the state of the autonomic nervous system in patients with meningoencephalitis
The study included an experimental group of 64 patients with meningoencephalitis with moderate to severe course, aged 18-60 years. The patientsβ score
according to the Glasgow Coma Scale was higher than 8. The group consisted of 2 subgroups of 32 patients: (1) magnesium sulfate was added to standard
treatment and the patientsβ condition was being assessed in 2 hours after every administration of this medicine, and (2) the patients of this subgroup have
received standard treatment without magnesium sulfate and have been examined in the same way. Magnesium sulfate was administered by intravenous
infusion of 20 ml of 25% solution (single dose 5000 mg) diluted in 400 ml of 10% solution of glucose. Besides common methods of examination, the
authors have used photoplethysmography and assessed autonomic nervous system reflexes and parameters, blood pressure components, and specific ECG
parameters. In comparison with the standard therapy, adding magnesium sulfate into treatment resulted in more pronounced decrudescence related with
the somatic and autonomic nervous system, namely: meningeal, encephalitis syndrome, respiratory, cardiovascular, intestinal dysfunctions. Magnesium
sulfate favors decrease of sympathicotonia and increase of vagotonia what especially declares itself through reducing blood pressure and heart rate. It is
reasonable to introduce magnesium sulfate in treatment protocols for meningoencephalitis
Radio-frequency discharges in Oxygen. Part 1: Modeling
In this series of three papers we present results from a combined
experimental and theoretical effort to quantitatively describe capacitively
coupled radio-frequency discharges in oxygen. The particle-in-cell Monte-Carlo
model on which the theoretical description is based will be described in the
present paper. It treats space charge fields and transport processes on an
equal footing with the most important plasma-chemical reactions. For given
external voltage and pressure, the model determines the electric potential
within the discharge and the distribution functions for electrons, negatively
charged atomic oxygen, and positively charged molecular oxygen. Previously used
scattering and reaction cross section data are critically assessed and in some
cases modified. To validate our model, we compare the densities in the bulk of
the discharge with experimental data and find good agreement, indicating that
essential aspects of an oxygen discharge are captured.Comment: 11 pages, 10 figure
Comparative study of semiclassical approaches to quantum dynamics
Quantum states can be described equivalently by density matrices, Wigner
functions or quantum tomograms. We analyze the accuracy and performance of
three related semiclassical approaches to quantum dynamics, in particular with
respect to their numerical implementation. As test cases, we consider the time
evolution of Gaussian wave packets in different one-dimensional geometries,
whereby tunneling, resonance and anharmonicity effects are taken into account.
The results and methods are benchmarked against an exact quantum mechanical
treatment of the system, which is based on a highly efficient Chebyshev
expansion technique of the time evolution operator.Comment: 32 pages, 8 figures, corrected typos and added references; version as
publishe
ΠΠ ΠΠΠΠΠΠΠβΠΠ ΠΠΠΠ’ΠΠΠΠΠ ΠΠ‘ΠΠΠ’Π
The article for the purpose of effective integration into the European educational space, adduces the problems of modern education inUkraine. It is noted that the effective professional formation of a student of Medical University is possible into accouat the characterogical, etnocultural features of personality and from the development of the country.Π ΡΡΠ°ΡΡΡ, Π· ΠΌΠ΅ΡΠΎΡ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡ ΡΠ½ΡΠ΅Π³ΡΠ°ΡΡΡ Π² ΠΠ²ΡΠΎΠΏΠ΅ΠΉΡΡΠΊΠΈΠΉ ΠΎΡΠ²ΡΡΠ½ΡΠΉ ΠΏΡΠΎΡΡΡΡ,Β ΠΎΠΊΡΠ΅ΡΠ»Π΅Π½Ρ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠΈ ΡΡΡΠ°ΡΠ½ΠΎΡ ΠΎΡΠ²ΡΡΠΈ Π² Π£ΠΊΡΠ°ΡΠ½Ρ. ΠΠΈΠ·Π½Π°ΡΠ΅Π½ΠΎ, ΡΠΎ Π΅ΡΠ΅ΠΊΡΠΈΠ²Π½Π΅ ΠΏΡΠΎΡΠ΅ΡΡΠΉΠ½Π΅ ΡΠΎΡΠΌΡΠ²Π°Π½Π½Ρ ΡΡΡΠ΄Π΅Π½ΡΠ° ΠΌΠ΅Π΄ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠ½ΡΠ²Π΅ΡΡΠΈΡΠ΅ΡΡ ΠΌΠΎΠΆΠ»ΠΈΠ²Π΅ Π· Π²ΡΠ°Ρ
ΡΠ²Π°Π½Π½ΡΠΌ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΈΡ
, Π΅ΡΠ½ΠΎΠΊΡΠ»ΡΡΡΡΠ°Π»ΡΠ½ΠΈΡ
ΠΎΡΠΎΠ±Π»ΠΈΠ²ΠΎΡΡΠ΅ΠΉ ΠΎΡΠΎΠ±ΠΈΡΡΠΎΡΡΡ ΡΠ° Ρ Π½Π΅Π²ΡΠ΄ΡΠΈΠ²Π½ΠΈΠΌ Π²ΡΠ΄ ΡΠΎΠ·Π²ΠΈΡΠΊΡ ΠΊΡΠ°ΡΠ½ΠΈ
On the Wake Structure in Streaming Complex Plasmas
The theoretical description of complex (dusty) plasmas requires multiscale
concepts that adequately incorporate the correlated interplay of streaming
electrons and ions, neutrals, and dust grains. Knowing the effective dust-dust
interaction, the multiscale problem can be effectively reduced to a
one-component plasma model of the dust subsystem. The goal of the present
publication is a systematic evaluation of the electrostatic potential
distribution around a dust grain in the presence of a streaming plasma
environment by means of two complementary approaches: (i) a high precision
computation of the dynamically screened Coulomb potential from the dynamic
dielectric function, and (ii) full 3D particle-in-cell simulations, which
self-consistently include dynamical grain charging and non-linear effects. The
applicability of these two approaches is addressed
ΠΠΎΠ»ΡΡΠΈΠ·Π°ΡΠΈΠΎΠ½Π½ΠΎ-ΠΌΠΎΠ΄ΡΠ»ΡΡΠΈΠΎΠ½Π½Π°Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π°Π±ΡΠΎΠ»ΡΡΠ½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ Π² ΡΠ°ΠΏΡΠΈΡΠΎΠ²ΡΡ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΎΠΊΠ½Π°Ρ
ΠΡΠΈ Π²ΠΈΡΠΎΡΡΠ²Π°Π½Π½Ρ Π·Π»ΠΈΠ²ΠΊΡΠ² ΠΌΠΎΠ½ΠΎΠΊΡΠΈΡΡΠ°Π»ΡΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΠΏΡΡΡΡ Π² Π½ΡΠΎΠΌΡ Π²ΠΈΠ½ΠΈΠΊΠ°ΡΡΡ Π΄Π΅ΡΠ΅ΠΊΡΠΈ Ρ Π²ΠΈΠ³Π»ΡΠ΄Ρ ΠΌΡΠΊΡΠΎΠ±ΡΠ»ΡΠ±Π°ΡΠΎΠΊ, Π³ΡΠ°Π½ΠΈΡΡ Π±Π»ΠΎΠΊΡΠ² Ρ Π·ΡΠΌΠΎΠ²Π»Π΅Π½Ρ Π½ΠΈΠΌΠΈ ΠΌΠ΅Ρ
Π°Π½ΡΡΠ½Ρ Π½Π°ΠΏΡΡΠΆΠ΅Π½Π½Ρ, ΡΠΊΡ ΡΡΡΡΡΠ²ΠΎ Π²ΠΏΠ»ΠΈΠ²Π°ΡΡΡ Π½Π° ΡΡΠ½ΠΊΡΡΠΎΠ½Π°Π»ΡΠ½Ρ Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΡ ΠΊΡΠΈΡΡΠ°Π»Ρ. ΠΡΠΎΠ±Π»Π΅ΠΌΡ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΡΠΊΠΎΡΡΡ ΡΠ°ΠΏΡΡΡΠΎΠ²ΠΈΡ
ΡΡΡΡΠΊΡΡΡ Π²ΠΈΡΡΡΡΡΡΡ Π±Π°Π³Π°ΡΡΠΌΠ° ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ, Π°Π»Π΅ Π²ΠΎΠ½ΠΈ Π½Π΅ Ρ Π΄ΠΎΡΡΠ°ΡΠ½ΡΠΎ ΡΡΡΠ»ΠΈΠ²ΠΈΠΌΠΈ Π΄Π»Ρ ΠΏΠΎΡΡΠ΅Π± ΡΡΡΠ°ΡΠ½ΠΎΡ ΠΎΠΏΡΠΈΠΊΠΈ ΡΠ° ΠΌΡΠΊΡΠΎΠ΅Π»Π΅ΠΊΡΡΠΎΠ½ΡΠΊΠΈ, Π°Π±ΠΎ Ρ ΡΠΊΠ»Π°Π΄Π½ΠΈΠΌΠΈ Ρ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ (ΡΠ΅Π½ΡΠ³Π΅Π½ΡΠ²ΡΡΠΊΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈ). Π’ΡΠ°Π΄ΠΈΡΡΠΉΠ½ΠΈΠΉ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ Π²Π½ΡΡΡΡΡΠ½ΡΡ
ΠΌΠ΅Ρ
Π°Π½ΡΡΠ½ΠΈΡ
Π½Π°ΠΏΡΡΠΆΠ΅Π½Ρ Π·Π΄ΡΠΉΡΠ½ΡΡΡΡ Π²ΡΠ·ΡΠ°Π»ΡΠ½ΠΎ Π½Π° ΠΏΠΎΠ»ΡΡΠΈΡΠΊΠΎΠΏΡ-ΠΏΠΎΠ»ΡΡΠΈΠΌΠ΅ΡΡΡ ΠΠΠ‘-250, Π² ΠΎΡΠ½ΠΎΠ²Ρ ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠΊΠ»Π°Π΄Π΅Π½ΠΎ ΠΌΠ΅ΡΠΎΠ΄ ΠΏΠΎΠ΄Π²ΡΠΉΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅Π½Π΅Π·Π°Π»ΠΎΠΌΠ»Π΅Π½Π½Ρ Π‘Π΅Π½Π°ΡΠΌΠΎΠ½Π°. ΠΡΠΎΡΠ΅ ΡΠ΅Ρ
Π½ΡΡΠ½Ρ ΠΌΠΎΠΆΠ»ΠΈΠ²ΠΎΡΡΡ ΡΡΠΎΠ³ΠΎ ΡΡΠ°Π΄ΠΈΡΡΠΉΠ½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Ρ Π½Π΅ Π·Π΄Π°ΡΠ½Ρ Π²ΠΈΠΊΠΎΠ½ΡΠ²Π°ΡΠΈ Π²ΠΈΡΠΎΠΊΠΎΡΡΡΠ»ΠΈΠ²ΠΈΠΉ ΠΊΡΠ»ΡΠΊΡΡΠ½ΠΈΠΉ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ Π·ΡΠ°Π·ΠΊΡΠ² ΠΌΠΎΠ½ΠΎΠΊΡΠΈΡΡΠ°Π»ΡΠ² ΡΠ°ΠΏΡΡΡΡ Π· ΠΌΡΠΊΡΠΎΠ½Π°ΠΏΡΡΠΆΠ΅Π½Π½ΡΠΌΠΈ. Π’ΠΎΠΌΡ Π°ΠΊΡΡΠ°Π»ΡΠ½ΠΎΡ Π·Π°Π΄Π°ΡΠ΅Ρ ΡΡΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΈΠ»Π°Π΄ΠΎΠ±ΡΠ΄ΡΠ²Π°Π½Π½Ρ Ρ ΡΠΎΠ·ΡΠΎΠ±Π»Π΅Π½Π½Ρ Π½ΠΎΠ²ΠΈΡ
Π²ΠΈΡΠΎΠΊΠΎΡΡΡΠ»ΠΈΠ²ΠΈΡ
ΠΌΠ΅ΡΠΎΠ΄ΡΠ² ΡΠ΅Ρ
Π½ΡΡΠ½ΠΎΡ Π΄ΡΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ ΡΠ° Π½Π΅ΡΡΠΉΠ½ΡΠ²Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΡΠΊΠΎΡΡΡ Π΄Π΅ΡΠ°Π»Π΅ΠΉ ΡΠ· ΡΠ°ΠΏΡΡΡΡ. ΠΠ²ΡΠΎΡΠΈ ΡΠΎΠ±ΠΎΡΠΈ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΡΠ²Π°Π»ΠΈ ΠΌΠΎΠΆΠ»ΠΈΠ²ΡΡΡΡ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΌΠΎΠ΄ΡΠ»ΡΡΡΠΉΠ½ΠΎΡ ΠΏΠΎΠ»ΡΡΠΈΠΌΠ΅ΡΡΡΡ Π΄Π»Ρ Π²ΠΈΡΡΡΠ΅Π½Π½Ρ ΠΏΠΎΡΡΠ°Π²Π»Π΅Π½ΠΎΡ Π·Π°Π΄Π°ΡΡ. ΠΠ΄Π½Π°ΠΊ ΡΡΠ°Π½ ΠΏΠΎΠ»ΡΡΠΈΠ·Π°ΡΡΡ ΡΠΊ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ Π²ΠΈΠΏΡΠΎΠΌΡΠ½ΡΠ²Π°Π½Π½Ρ ΠΌΠ°Ρ Π· ΠΎΠ³Π»ΡΠ΄Ρ Π½Π° Π΄ΠΈΡΠ΅ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½Ρ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΡΡ ΡΡΡΡΡΠ²Ρ Π²ΡΠ΄ΠΌΡΠ½Π½ΡΡΡΡ Π²ΡΠ΄ ΡΠ½ΡΠΈΡ
ΡΠΏΠΎΡΠΎΠ±ΡΠ² ΠΌΠΎΠ΄ΡΠ»ΡΡΡΡ. ΠΠΎΠ½Π° ΠΏΠΎΠ»ΡΠ³Π°Ρ, ΠΏΠ΅ΡΡ Π·Π° Π²ΡΠ΅, Ρ ΡΠΎΠΌΡ, ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠ·Π°ΡΡΡ, ΡΠΊ ΠΏΡΠΎΡΡΠΎΡΠΎΠ²Π° Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° Ρ
Π²ΠΈΠ»Ρ, Π·Π°Π»Π΅ΠΆΠΈΡΡ Π²ΡΠ΄ ΡΡΠΊΡΠΏΠ½ΠΎΡΡΡ Π·Π½Π°ΡΠ΅Π½Ρ β ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ Π²Π΅ΠΊΡΠΎΡΠ° ΠΠ°ΠΊΡΠ²Π΅Π»Π°-ΠΠΆΠΎΠ½ΡΠ° Π°Π±ΠΎ Π²Π΅ΠΊΡΠΎΡΠ° Π‘ΡΠΎΠΊΡΠ°. ΠΡΠΆΠ΅, Π½Π° Π²ΡΠ΄ΠΌΡΠ½Ρ Π²ΡΠ΄ ΠΌΠΎΠ΄ΡΠ»ΡΡΡΠΉ ΡΠ½ΡΠΈΡ
ΡΡΠ·ΠΈΡΠ½ΠΈΡ
Π²Π΅Π»ΠΈΡΠΈΠ½, ΡΠΎ ΠΎΠΏΠ΅ΡΡΡΡΡ ΡΠ· ΡΠ΄ΠΈΠ½ΠΈΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠΌ, ΠΏΠΎΠ»ΡΡΠΈΠ·Π°ΡΡΠΉΠ½Π° ΠΌΠΎΠ΄ΡΠ»ΡΡΡΡ (ΠΠ) Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΡΡΡ Π΄Π²ΠΎΠΌΡΡΠ½ΠΈΠΌ Π²ΠΏΠ»ΠΈΠ²ΠΎΠΌ Π½Π° Ρ
Π²ΠΈΠ»Ρ. ΠΠ΅ΡΠΎΡ ΡΠΎΠ±ΠΎΡΠΈ Π±ΡΠ»ΠΎ ΡΠΎΠ·ΡΠΎΠ±Π»Π΅Π½Π½Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Π½Ρ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΈΡ
Π²Π΅Π»ΠΈΡΠΈΠ½ Π²Π½ΡΡΡΡΡΠ½ΡΡ
ΠΌΠ΅Ρ
Π°Π½ΡΡΠ½ΠΈΡ
Π½Π°ΠΏΡΡΠΆΠ΅Π½Ρ Ρ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΈΡ
ΡΠΎΡΠΊΠ°Ρ
ΡΠ°ΠΏΡΡΡΠΎΠ²ΠΈΡ
ΠΎΠΏΡΠΈΡΠ½ΠΈΡ
Π²ΡΠΊΠΎΠ½ Π·Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ ΠΌΠΎΠ΄ΡΠ»ΡΡΡΠΉΠ½ΠΎΡ ΠΏΠΎΠ»ΡΡΠΈΠΌΠ΅ΡΡΡΡ. Π£ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ
Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Ρ ΠΏΠΎΠ»ΡΡΠΎΠ²Π°Π½ΠΈΡ
Π·ΡΠ°Π·ΠΊΡΠ² ΡΠ°ΠΏΡΡΡΡ (ΡΠΈΠΏΡ ΠΎΠΏΡΠΈΡΠ½ΠΈΡ
Π²ΡΠΊΠΎΠ½) Π±ΡΠ»ΠΎ ΡΠΎΠ·ΡΠΎΠ±Π»Π΅Π½ΠΎ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΡ Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Π½Ρ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΈΡ
Π·Π½Π°ΡΠ΅Π½Ρ Π²Π½ΡΡΡΡΡΠ½ΡΡ
ΠΌΠ΅Ρ
Π°Π½ΡΡΠ½ΠΈΡ
Π½Π°ΠΏΡΡΠΆΠ΅Π½Ρ Ρ ΠΌΠ°ΡΠ΅ΡΡΠ°Π»Π°Ρ
, ΠΏΡΠΎΠ·ΠΎΡΠΈΡ
Π² ΠΎΠΏΡΠΈΡΠ½ΠΎΠΌΡ Π΄ΡΠ°ΠΏΠ°Π·ΠΎΠ½Ρ Π²ΠΈΠΏΡΠΎΠΌΡΠ½ΡΠ²Π°Π½Π½Ρ Π½Π° ΠΎΡΠ½ΠΎΠ²Ρ ΠΌΠΎΠ΄ΡΠ»ΡΡΡΠΉΠ½ΠΎΡ ΠΏΠΎΠ»ΡΡΠΈΠΌΠ΅ΡΡΡΡ. Π ΠΎΠ·ΡΠΎΠ±Π»Π΅Π½Π° ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° Π²ΠΈΡΠ²ΠΈΡΠΈ Π²Π½ΡΡΡΡΡΠ½Ρ ΠΌΠ΅Ρ
Π°Π½ΡΡΠ½Ρ Π½Π°ΠΏΡΡΠΆΠ΅Π½Π½Ρ Ρ ΡΠ°ΠΏΡΡΡΠΎΠ²ΠΈΡ
Π²ΡΠΊΠ½Π°Ρ
Ρ Π²ΠΈΠ·Π½Π°ΡΠΈΡΠΈ ΠΏΡΠΈΡΠΈΠ½Ρ Π½Π΅Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π½ΠΎΡΡΡ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½ΠΈΡ
Π·ΡΠ°Π·ΠΊΡΠ² ΡΠΎΠ΄ΠΎ Π²ΠΈΠΌΠΎΠ³ Π»Π°Π·Π΅ΡΠ½ΠΈΡ
ΡΠΈΡΡΠ΅ΠΌ. Π ΠΎΠ·ΡΠΎΠ±Π»Π΅Π½ΠΎ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΡ Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Π½Ρ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΈ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΈΡ
Π·Π½Π°ΡΠ΅Π½Ρ Π²Π½ΡΡΡΡΡΠ½ΡΡ
ΠΌΠ΅Ρ
Π°Π½ΡΡΠ½ΠΈΡ
Π½Π°ΠΏΡΡΠΆΠ΅Π½Ρ Ρ ΡΠ°ΠΏΡΡΡΠΎΠ²ΠΈΡ
ΠΎΠΏΡΠΈΡΠ½ΠΈΡ
Π²ΡΠΊΠ½Π°Ρ
Π·Π° Π΄ΠΎΠΏΠΎΠΌΠΎΠ³ΠΎΡ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ ΠΌΠΎΠ΄ΡΠ»ΡΡΡΠΉΠ½ΠΎΡ ΠΏΠΎΠ»ΡΡΠΈΠΌΠ΅ΡΡΡΡ. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ ΡΠΎΠ·ΠΏΠΎΠ΄ΡΠ» Ρ Π΄Π²ΠΎΠΌΡΡΠ½ΠΎΠΌΡ ΠΏΡΠΎΡΡΠΎΡΡ Π²Π½ΡΡΡΡΡΠ½ΡΡ
Π½Π°ΠΏΡΡΠΆΠ΅Π½Ρ Ρ ΠΏΠΎΠ»ΡΡΠΎΠ²Π°Π½ΠΈΡ
Π·ΡΠ°Π·ΠΊΠ°Ρ
ΡΠ°ΠΏΡΡΡΡ ΡΠ° ΡΡ
Π°Π±ΡΠΎΠ»ΡΡΠ½Ρ Π·Π½Π°ΡΠ΅Π½Π½Ρ.There are defects such as microbubbles and boundaries of blocks appears in monocrystalline sapphire bars when they growing due to mechanical stresses that significantly affect the functional properties of the crystal. The quality control structures sapphire problem is solved in many ways, but they are not sufficiently sensitive to the needs of modern optics and microelectronics, or difficult to use (X-ray methods). Traditional control internal mechanical stresses perform visually on polariscope-polarimeter PKS-250, which is based on the double refraction Senarmona. However, the traditional method technical capability is not able to perform highly quantitative control samples of single crystal sapphire with mikrostresses. Therefore, the actual problem of modern instrumentation is the development of new highly sensitive methods of non-destructive quality diagnostics and control of parts of the sapphire. The authors of investigated the possibility of using the method of modulation polarimetry to solve this problem. However, this characteristic radiation as the state of polarization has in terms of differential spectroscopy substantial difference from other methods of modulation. It is, above all, that the polarization as spatial characteristics of the wave reflected set of values - the components of the vector Maxwell Jones or Stokes vector. Thus, unlike the modulation of other physical quantities that operate with a single parameter, polarization modulation (PM) is characterized by two-dimensional effects on the wave. The purpose of the work was the development of methods for determining the absolute values of the internal stresses in local points of sapphire optical windows using modulation polarimetry. The polished sapphire samples (such as optical windows) studies has developed a method of determining the absolute values of the internal stresses in materials transparent in the optical radiation through modulation polarimetry. The identification of internal stresses in the sapphire windows and determine the cause of inconsistency of the samples with the requirements of laser systems are enabled in this method. The determination of the absolute values of internal mechanical stresses in sapphire optical windows through the use of modulation polarimetry experimental method is developed. The distribution in two-dimensional space of internal stresses in polished sapphire samples and their absolute values are established.ΠΡΠΈ Π²ΡΡΠ°ΡΠΈΠ²Π°Π½ΠΈΠΈ ΡΠ»ΠΈΡΠΊΠΎΠ² ΠΌΠΎΠ½ΠΎΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°ΠΏΡΠΈΡΠ° Π² Π½Π΅ΠΌ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡ Π΄Π΅ΡΠ΅ΠΊΡΡ Π² Π²ΠΈΠ΄Π΅ ΠΌΠΈΠΊΡΠΎΠΏΡΠ·ΡΡΡΠΊΠΎΠ², Π³ΡΠ°Π½ΠΈΡ Π±Π»ΠΎΠΊΠΎΠ² ΠΈ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π½ΡΠ΅ ΠΈΠΌΠΈ ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π²Π»ΠΈΡΡΡ Π½Π° ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΊΡΠΈΡΡΠ°Π»Π»Π°. ΠΡΠΎΠ±Π»Π΅ΠΌΡ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΡΠ°ΠΏΡΠΈΡΠΎΠ²ΡΡ
ΡΡΡΡΠΊΡΡΡ ΡΠ΅ΡΠ°ΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ, Π½ΠΎ ΠΎΠ½ΠΈ Π½Π΅ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½Ρ Π΄Π»Ρ Π½ΡΠΆΠ΄ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΎΠΏΡΠΈΠΊΠΈ ΠΈ ΠΌΠΈΠΊΡΠΎΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΈΠΊΠΈ, ΠΈΠ»ΠΈ ΡΠ»ΠΎΠΆΠ½Ρ Π² ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ (ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ²ΡΠΊΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ). Π’ΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΡΠΉ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΡ
ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΡΡ Π²ΠΈΠ·ΡΠ°Π»ΡΠ½ΠΎ Π½Π° ΠΏΠΎΠ»ΡΡΠΈΡΠΊΠΎΠΏΠ΅-ΠΏΠΎΠ»ΡΡΠΈΠΌΠ΅ΡΡΠ΅ ΠΠΠ‘-250, Π² ΠΎΡΠ½ΠΎΠ²Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ ΠΌΠ΅ΡΠΎΠ΄ Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ Π»ΡΡΠ΅ΠΏΡΠ΅Π»ΠΎΠΌΠ»Π΅Π½ΠΈΡ Π‘Π΅Π½Π°ΡΠΌΠΎΠ½Π°. ΠΠ΄Π½Π°ΠΊΠΎ ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΡΡΠΎΠ³ΠΎ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° Π½Π΅ ΡΠΏΠΎΡΠΎΠ±Π½Ρ Π²ΡΠΏΠΎΠ»Π½ΡΡΡ Π²ΡΡΠΎΠΊΠΎΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΉ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΠΌΠΎΠ½ΠΎΠΊΡΠΈΡΡΠ°Π»Π»ΠΎΠ² ΡΠ°ΠΏΡΠΈΡΠ° Ρ ΠΌΠΈΠΊΡΠΎΠ½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡΠΌΠΈ. ΠΠΎΡΡΠΎΠΌΡ Π°ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ΠΉ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΈΠ±ΠΎΡΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ° Π½ΠΎΠ²ΡΡ
Π²ΡΡΠΎΠΊΠΎΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ ΠΈ Π½Π΅ΡΠ°Π·ΡΡΡΠ°ΡΡΠ΅Π³ΠΎ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° Π΄Π΅ΡΠ°Π»Π΅ΠΉ ΠΈΠ· ΡΠ°ΠΏΡΠΈΡΠ°. ΠΠ²ΡΠΎΡΡ ΡΠ°Π±ΠΎΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΌΠΎΠ΄ΡΠ»ΡΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΏΠΎΠ»ΡΡΠΈΠΌΠ΅ΡΡΠΈΠΈ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎΡΡΠ°Π²Π»Π΅Π½Π½ΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ. ΠΠ΄Π½Π°ΠΊΠΎ ΡΠ°ΠΊΠ°Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ ΠΊΠ°ΠΊ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΏΠΎΠ»ΡΡΠΈΠ·Π°ΡΠΈΠΈ, ΠΈΠΌΠ΅Π΅Ρ Ρ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ Π΄ΡΡΠ³ΠΈΡ
ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² ΠΌΠΎΠ΄ΡΠ»ΡΡΠΈΠΈ. ΠΠ½Π° Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ, ΠΏΡΠ΅ΠΆΠ΄Π΅ Π²ΡΠ΅Π³ΠΎ, Π² ΡΠΎΠΌ, ΡΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠ·Π°ΡΠΈΡ, ΠΊΠ°ΠΊ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½Π°Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° Π²ΠΎΠ»Π½Ρ, Π²ΡΡΠ°ΠΆΠ°Π΅ΡΡΡ ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ - ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ°ΠΌΠΈ Π²Π΅ΠΊΡΠΎΡΠ° ΠΠ°ΠΊΡΠ²Π΅Π»Π»Π°-ΠΠΆΠΎΠ½ΡΠ° ΠΈΠ»ΠΈ Π²Π΅ΠΊΡΠΎΡΠ° Π‘ΡΠΎΠΊΡΠ°. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π² ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ ΠΌΠΎΠ΄ΡΠ»ΡΡΠΈΠΉ Π΄ΡΡΠ³ΠΈΡ
ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ
Π²Π΅Π»ΠΈΡΠΈΠ½, ΠΎΠΏΠ΅ΡΠΈΡΡΡΡΠΈΡ
Ρ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΡΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠΌ, ΠΏΠΎΠ»ΡΡΠΈΠ·Π°ΡΠΈΠΎΠ½Π½Π°Ρ ΠΌΠΎΠ΄ΡΠ»ΡΡΠΈΡ (ΠΠ) Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅ΡΡΡ Π΄Π²ΡΡ
ΠΌΠ΅ΡΠ½ΡΠΌ Π²Π»ΠΈΡΠ½ΠΈΠ΅ΠΌ Π½Π° Π²ΠΎΠ»Π½Ρ. Π¦Π΅Π»ΡΡ ΡΠ°Π±ΠΎΡΡ Π±ΡΠ»Π° ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ° ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π°Π±ΡΠΎΠ»ΡΡΠ½ΡΡ
Π²Π΅Π»ΠΈΡΠΈΠ½ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΡ
ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ Π² Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΡ
ΡΠΎΡΠΊΠ°Ρ
ΡΠ°ΠΏΡΠΈΡΠΎΠ²ΡΡ
ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΠΊΠΎΠ½ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠΎΠ΄ΡΠ»ΡΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΏΠΎΠ»ΡΡΠΈΠΌΠ΅ΡΡΠΈΠΈ. Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎΠ»ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΡΠ°ΠΏΡΠΈΡΠ° (ΡΠΈΠΏΠ° ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΠΊΠΎΠ½) Π±ΡΠ»Π° ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π° ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π°Π±ΡΠΎΠ»ΡΡΠ½ΡΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΡ
ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ Π² ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°Ρ
, ΠΏΡΠΎΠ·ΡΠ°ΡΠ½ΡΡ
Π² ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΠΎΠ΄ΡΠ»ΡΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΏΠΎΠ»ΡΡΠΈΠΌΠ΅ΡΡΠΈΠΈ. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½Π°Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° Π²ΡΡΠ²ΠΈΡΡ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΠ΅ ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π² ΡΠ°ΠΏΡΠΈΡΠΎΠ²ΡΡ
ΠΎΠΊΠ½Π°Ρ
ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠΈΡΠΈΠ½Ρ Π½Π΅ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡΡ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡΠΌ Π»Π°Π·Π΅ΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π° ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π°Π±ΡΠΎΠ»ΡΡΠ½ΡΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΡ
ΠΌΠ΅Ρ
Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΡ
Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ Π² ΡΠ°ΠΏΡΠΈΡΠΎΠ²ΡΡ
ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΠΊΠ½Π°Ρ
Π·Π° ΡΡΠ΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠΎΠ΄ΡΠ»ΡΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΏΠΎΠ»ΡΡΠΈΠΌΠ΅ΡΡΠΈΠΈ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π² Π΄Π²ΡΡ
ΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΡ
Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΉ Π² ΠΏΠΎΠ»ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΎΠ±ΡΠ°Π·ΡΠ°Ρ
ΡΠ°ΠΏΡΠΈΡΠ° ΠΈ ΠΈΡ
Π°Π±ΡΠΎΠ»ΡΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ
- β¦