324 research outputs found

    Deconvolution with Shapelets

    Full text link
    We seek to find a shapelet-based scheme for deconvolving galaxy images from the PSF which leads to unbiased shear measurements. Based on the analytic formulation of convolution in shapelet space, we construct a procedure to recover the unconvolved shapelet coefficients under the assumption that the PSF is perfectly known. Using specific simulations, we test this approach and compare it to other published approaches. We show that convolution in shapelet space leads to a shapelet model of order nmaxh=nmaxg+nmaxfn_{max}^h = n_{max}^g + n_{max}^f with nmaxfn_{max}^f and nmaxgn_{max}^g being the maximum orders of the intrinsic galaxy and the PSF models, respectively. Deconvolution is hence a transformation which maps a certain number of convolved coefficients onto a generally smaller number of deconvolved coefficients. By inferring the latter number from data, we construct the maximum-likelihood solution for this transformation and obtain unbiased shear estimates with a remarkable amount of noise reduction compared to established approaches. This finding is particularly valid for complicated PSF models and low S/NS/N images, which renders our approach suitable for typical weak-lensing conditions.Comment: 9 pages, 9 figures, submitted to A&

    A new analysis of the WASP-3 system: no evidence for an additional companion

    Full text link
    In this work we investigate the problem concerning the presence of additional bodies gravitationally bounded with the WASP-3 system. We present eight new transits of this planet and analyse all the photometric and radial velocity data published so far. We did not observe significant periodicities in the Fourier spectrum of the observed minus calculated (O-C) transit timing and radial velocity diagrams (the highest peak having false-alarm probabilities of 56 per cent and 31 per cent, respectively) or long-term trends. Combining all the available information, we conclude that the radial velocity and transit timing techniques exclude, at 99 per cent confidence limit, any perturber more massive than M \gtrsim 100 M_Earth with periods up to 10 times the period of the inner planet. We also investigate the possible presence of an exomoon on this system and determined that considering the scatter of the O-C transit timing residuals a coplanar exomoon would likely produce detectable transits. This hypothesis is however apparently ruled out by observations conducted by other researchers. In case the orbit of the moon is not coplanar the accuracy of our transit timing and transit duration measurements prevents any significant statement. Interestingly, on the basis of our reanalysis of SOPHIE data we noted that WASP-3 passed from a less active (log R'_hk=-4.95) to a more active (log R'_hk=-4.8) state during the 3 yr monitoring period spanned by the observations. Despite no clear spot crossing has been reported for this system, this analysis claims for a more intensive monitoring of the activity level of this star in order to understand its impact on photometric and radial velocity measurements.Comment: MNRAS accepted (14/08/2012

    IGG-antibody seroprevalence of West Nile Virus among blood donors in Nairobi and Nakuru regional blood transfusion testing centers in Kenya

    Get PDF
    Background: West Nile Virus (WNV) is an arbovirus transmitted by infected mosquitoes which cause most of its incidence (CDC, 2015). It is transmitted by the culex mosquito which is prevalent in Kenya.Objective: To determine and compare the sero prevalence of WNV among blood donors in Nairobi and Nakuru Regional blood transfusion testing centers in Kenya.Study design: A cross-sectional studySetting: It was carried out in two Regional Blood Transfusion Centers (RBTCs) which are based in Nairobi and Nakuru. These two centers are associated with possible low and high prevalence respectively.Subject: A total of 180 blood samples were randomly selected over a period of one month. These blood samples were tested for WNV IgG using ELISA. Results: Majority of the donors were below 35 years of age and were predominantly male. WNV IgG prevalence was 15% in blood donors (95% CI 10-20.5%). Prevalence of cross infection of TTI and WNV was 8.3% (95% CI 4.4- 12.2%). The prevalence of WVN IgG was highest in the 19-35 years’ age group (16.5%) and females (21.6%) though the results were not statistically significant. There was no difference in the IgG positivity between the different centers.Conclusion: Infection with WNV should be of public health concern because about a fifth of those infected with WNV develop illness. About 10% of those who develop neurological symptoms succumb to the disease

    The importance of the merging activity for the kinetic polarization of the Sunyaev-Zel'dovich signal from galaxy clusters

    Full text link
    The polarization sensitivity of the upcoming millimetric observatories will open new possibilities for studying the properties of galaxy clusters and for using them as powerful cosmological probes. For this reason it is necessary to investigate in detail the characteristics of the polarization signals produced by their highly ionized intra-cluster medium (ICM). This work is focussed on the polarization effect induced by the ICM bulk motions, the so-called kpSZ signal, which has an amplitude proportional to the optical depth and to the square of the tangential velocity. In particular we study how this polarization signal is affected by the internal dynamics of galaxy clusters and what is its dependence on the physical modelling adopted to describe the baryonic component. This is done by producing realistic kpSZ maps starting from the outputs of two different sets of high-resolution hydrodynamical N-body simulations. The first set (17 objects) follows only non-radiative hydrodynamics, while for each of 9 objects of the second set we implement four different kinds of physical processes. Our results shows that the kpSZ signal turns out to be a very sensitive probe of the dynamical status of galaxy clusters. We find that major merger events can amplify the signal up to one order of magnitude with respect to relaxed clusters, reaching amplitude up to about 100 nuK. This result implies that the internal ICM dynamics must be taken into account when evaluating this signal because simplicistic models, based on spherical rigid bodies, may provide wrong estimates. Finally we find that the dependence on the physical modelling of the baryonic component is relevant only in the very inner regions of clusters.Comment: 13 pages, 7 figures, submitted to A&

    Reproducibility of Statistical Tests Based on Randomised Response Data

    Get PDF
    Reproducibility of experimental conclusions is an important topic in various fields, including social studies. The lack of reproducibility in research results not only limits scientific progress, but also wastes time, resources, and undermines society’s confidence in scientific findings. This paper focuses on the statistical reproducibility of hypothesis test outcomes based on data collected using randomised response techniques (RRT). Nonparametric predictive inference (NPI) is used to quantify reproducibility, which is well-suited to treat reproducibility as a prediction problem. NPI relies on few model assumptions and provides lower and upper bounds for reproducibility probabilities. This paper concludes that less variability in the reported responses of RRT methods leads to higher reproducibility of statistical hypothesis tests based on RRT data with the same degree of privacy

    Smoothed Bootstrap Methods for Hypothesis Testing

    Get PDF
    This paper demonstrates the application of smoothed bootstrap methods and Efron’s methods for hypothesis testing on real-valued data, right-censored data and bivariate data. The tests include quartile hypothesis tests, two sample medians and Pearson and Kendall correlation tests. Simulation studies indicate that the smoothed bootstrap methods outperform Efron’s methods in most scenarios, particularly for small datasets. The smoothed bootstrap methods provide smaller discrepancies between the actual and nominal error rates, which makes them more reliable for testing hypotheses

    Predictive inference for system reliability after common-cause component failures

    Get PDF
    Abstract This paper presents nonparametric predictive inference for system reliability following common-cause failures of components. It is assumed that a single failure event may lead to simultaneous failure of multiple components. Data consist of frequencies of such events involving particular numbers of components. These data are used to predict the number of components that will fail at the next failure event. The effect of failure of one or more components on the system reliability is taken into account through the system's survival signature. The predictive performance of the approach, in which uncertainty is quantified using lower and upper probabilities, is analysed with the use of ROC curves. While this approach is presented for a basic scenario of a system consisting of only a single type of components and without consideration of failure behaviour over time, it provides many opportunities for more general modelling and inference, these are briefly discussed together with the related research challenges

    SHELS: Testing Weak Lensing Maps with Redshift Surveys

    Full text link
    Weak lensing surveys are emerging as an important tool for the construction of "mass selected" clusters of galaxies. We evaluate both the efficiency and completeness of a weak lensing selection by combining a dense, complete redshift survey, the Smithsonian Hectospec Lensing Survey (SHELS), with a weak lensing map from the Deep Lens Survey (DLS). SHELS includes 11,692 redshifts for galaxies with R < 20.6 in the four square degree DLS field; the survey is a solid basis for identifying massive clusters of galaxies with redshift z < 0.55. The range of sensitivity of the redshift survey is similar to the range for the DLS convergence map. Only four the twelve convergence peaks with signal-to-noise > 3.5 correspond to clusters of galaxies with M > 1.7 x 10^14 solar masses. Four of the eight massive clusters in SHELS are detected in the weak lensing map yielding a completeness of roughly 50%. We examine the seven known extended cluster x-ray sources in the DLS field: three can be detected in the weak lensing map, three should not be detected without boosting from superposed large-scale structure, and one is mysteriously undetected even though its optical properties suggest that it should produce a detectable lensing signal. Taken together, these results underscore the need for more extensive comparisons among different methods of massive cluster identification.Comment: 34 pages, 16 figures, ApJ accepte
    • …
    corecore