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Abstract

Reproducibility of experimental conclusions is an important topic in
various fields, including social studies. The lack of reproducibility in
research results not only limits scientific progress but also wastes time,
resources, and undermines society’s confidence in scientific findings.
This paper focuses on the statistical reproducibility of hypothesis test
outcomes based on data collected using randomised response tech-
niques (RRT). Nonparametric predictive inference (NPI) is used to
quantify reproducibility, which is well-suited to treat reproducibil-
ity as a prediction problem. NPI relies on few model assumptions
and provides lower and upper bounds for reproducibility probabilities.
This paper concludes that less variability in the reported responses
of RRT methods leads to higher reproducibility of statistical hypoth-
esis tests based on RRT data with the same degree of privacy.
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1 Introduction

In statistics, reproducibility refers to the ability to reproduce a study’s conclu-
sions if the study is repeated in the same way. Science depends substantially on
reproducibility to ensure that its findings are valid. Goodman [1] emphasised
the importance of the statistical reproducibility challenge for investigations.
He argued that p-values have been inaccurately used and misunderstood in
research, providing the results a misleading aspect of confidence and ability
for generalisation. He pointed out that p-values do not indicate effect size or
reproducibility probability, which are crucial to research. Goodman [1] advo-
cated a more detailed and open approach to statistical inference, one that
involves effect sizes, confidence intervals, reproducibility probability, and other
measures. Senn [2] agrees with Goodman that the p-value and reproducibil-
ity probability are separate measurements. He did not agree with Goodman’s
claim that the p-value overstates the strength of the evidence against the null
hypothesis; however, Senn [2] argued that there is a connection between the
p-values and reproducibility probability.

Coolen and BinHimd [3] presented NPI for the reproducibility of some
basic tests. Wilcoxon’s signed rank test and the two sample rank sum test were
used to introduce nonparametric predictive inference (NPI) for reproducibility
probability (RP) [3]. NPI for Bernoulli quantities [4] and for real-valued data
[5] were both used for these inferences. They produced NPI lower and upper

reproducibility probabilities, 𝑅𝑃 and 𝑅𝑃, instead of precise values. The NPI-
bootstrap approach, as developed and demonstrated by BinHimd [32] for the
Kolmogorov-Smirnov test, can be used to provide NPI for more complex test
situations.

In order to increase the validity of scientific findings, Billheimer [6] empha-
sises the significance of predictive inference and scientific reproducibility.
Additionally, Billheimer argues that predictive inference provides a suitable
method for inference on reproducibility by taking the distribution of future
data into account. Next, he models the predictive distribution for the next
observation, 𝑋𝑛+1, given the original observation 𝑋𝑛 , and uses the de Finetti
representation theorem [7]. His viewpoint is that parametric modelling is a
useful approximation of the prior distribution of either parameters or possible
observations, with parameter choices only affecting the distribution of future
observables. Additionally, findings or actions based on predictions should be
evaluated in the context of the research problem. He also refers to the impor-
tance of the predictive inference method which encourages statisticians to
characterise interesting findings using observable quantities and predict the
probability of them in future studies.

This paper reports the first study of reproducibility of statistical inferences
based on data collected using RRT methods. The RRT methods used can
be considered to be classical methods, which seemed to be a good starting
point to explore aspects of reproducibility. In recent years, many important
contributions have been published on RRT methodology, leading to quite a
wide variety of RRT methods. While these mostly still build on the classic
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ideas, they consider, for example, more explicitly the respondent privacy and
efficiency [40, 41]. It will be of great importance to study reproducibility of
inferences based on data using such more modern RRT methods in the future.

Thus, in this paper, we study the reproducibility of statistical tests based
on data collected from randomised response techniques (RRT). These RRTs
can be used in social studies to elicit a true response to sensitive questions,
which can be an effective method to determine the proportion of sensitive
characteristics. We define the reproducibility probability (RP) of a test as the
probability that the test result, whether the null hypothesis is rejected or not,
will be the same if the test is repeated using an experiment done in the same
way as the original experiment.

This paper is organised as follows. Section 2 introduces the RRT meth-
ods for the study in this paper. Nonparametric Predictive Inference (NPI)
is demonstrated in Section 3. Section 4 explains NPI for RP (NPI-RP) for
one-sided tests. Section 5 introduces a measure of reproducibility probability
(MRP) and presents a comparison of the reproducibility of hypothesis tests
using data collected by RRT. Section 6 presents a discussion of related topics
for further research.

2 Randomised response techniques (RRT)

Randomised response techniques (RRT) are used to avoid possible embarrass-
ment when respondents are asked sensitive questions. A spinner, a deck of
cards, or a coin can be used as a randomisation device, and the responses
are hidden from the interviewer. These methods help individuals to main-
tain their privacy. There are two basic RRT method approaches: qualitative
randomised response techniques using ’Yes’ or ’No’ responses and quantita-
tive randomised response methods using real numbers. In this paper, we only
consider qualitative RRT methods.

2.1 Qualitative randomised response techniques

In this section, we introduce qualitative RRT for surveys in which sensitive
questions are answered using qualitative binary response variables, typically
‘Yes’ or ‘No’. Warner [8] presented the first RRT method, which we refer to
as the Warner Method (WM). Suppose that we want to estimate the propor-
tion 𝜋 of a population who have a sensitive characteristic A using the WM
method. In this method, there are two questions, 𝑄1 and 𝑄2, to determine if
the respondent is in the target group A (they have the sensitive characteris-
tic) or if they do not have the sensitive characteristic so they belong to Ā, as
follows:

𝑄1 : Are you a member of group A?

𝑄2 : Are you a member of group Ā?
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Assume that a sample of size 𝑛 is selected from a target population, and there
is a randomisation device which helps respondents to choose the question.
Suppose that with probability 𝛾, the respondent is asked question 𝑄1, which
is sensitive, and with probability 1 − 𝛾, the respondent is asked question 𝑄2,
which is also sensitive, where 𝛾 is known to the interviewer. As a result, the
number of people who get question 𝑄1 is Binomially distributed with sample
size 𝑛 and parameter 𝛾. Each response is either Yes ( ¤𝑌) or No ( ¤𝑁). The
probability of a ’Yes’ answer is:

𝑃∗
𝑊 = 𝛾𝜋 + (1 − 𝛾)(1 − 𝜋) (1)

Warner [8] suggested that the probability of a sensitive question in the
randomisation device should be greater than 0.5. The reason for this choice
is that if 𝛾 = 0.5, then the probability of respondent 𝑖 saying ‘Yes’ will not
depend on 𝜋 in Equation (1), so, the response would provide no information
about 𝜋. If 𝛾 = 1, we just return to the non-RRT method and use the direct
question. If we choose 0.5 < 𝛾 < 1 or 0 < 𝛾 < 0.5, the respondent provides
a useful response, and the respondent does not reveal to which group they
belong [8].

Assume that 𝑌 is the Binomial random quantity of the number of ‘Yes’
responses to the chosen question where 𝑌 ∼ 𝐵𝑖𝑛(𝑛, 𝑃∗

𝑊
) and 𝑌 ∈ {0, 1, . . . , 𝑛}.

Then, the expected value of 𝑌 is E(𝑌) = 𝑛𝑃∗
𝑊
, and the estimator �̂�(𝑌) of the

proportion 𝜋 of people who have the sensitive characteristic is

�̂�(𝑌) = 𝑛(𝛾 − 1) + 𝑌

(2𝛾 − 1)𝑛 where 0 ≤ 𝛾 ≤ 1, 𝛾 ≠
1

2
(2)

The expectation of the estimator �̂�(𝑌) [8] is

E(�̂�(𝑌)) = E

[
𝑛(𝛾 − 1) + 𝑌

(2𝛾 − 1)𝑛

]
= 𝜋 (3)

So �̂�(𝑌) is an unbiased estimator of 𝜋. The variance of the estimator �̂�(𝑌) is
[9]:

Var(�̂�(𝑌)) = (𝜋 − 𝜋2)
𝑛

+ 𝛾(1 − 𝛾)
𝑛(2𝛾 − 1)2 where 0 ≤ 𝛾 ≤ 1, 𝛾 ≠

1

2
(4)

The first term in Equation (4) is the binomial variance related to the sensitive
question. The second term is the extra variance due to the uncertainty caused
by using a randomisation device.

The Greenberg technique [9] and the Forced Method [10] are other RRT
approaches for binary responses which are used in this paper. The Greenberg
Method (GB) [9] is a variation of the WM method [8] in which respondents
are also randomly asked one of two questions using the randomisation device.
Assume that we have a sample of size 𝑛, and random quantity 𝑌 is the number
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of ‘Yes’ answers to the chosen question. Let A represent the sensitive charac-
teristic of interest, whereas B denotes a neutral characteristic that is unrelated
to A. The unrelated question aims to encourage respondents to answer the
selected question truthfully. Let 𝜋𝐴 and 𝜋𝐵 represent the proportions of indi-
viduals belonging to groups A and B, respectively. If both proportions 𝜋𝐴

and 𝜋𝐵 are unknown, it is necessary to choose two independent samples from
the population, assuming a basic random sampling with replacement method
and two separate methods of randomisation are used for the two samples. If
𝜋𝐵 is only known, only one sample and decks of cards are needed. Each card
contains either a sensitive or an unrelated question, which occurs with proba-
bility 𝛾 and 1−𝛾, respectively. Each question can result in one of two possible
answers: a Yes ( ¤𝑌) or a No ( ¤𝑁). The two questions could be:

𝑄1 : Are you a member of group A?

𝑄2 : Are you a member of group B?

Then, the probability of the event that a person answers ‘Yes’ to the selected
question of the GB Method is

𝑃∗
𝐺 = 𝛾𝜋𝐴 + (1 − 𝛾)𝜋𝐵 (5)

Note that, as for WM, in applying GB, the interviewer is unaware of the
question being asked. It is preferable to choose 𝜋𝐵 close to zero [11]. The
estimator �̂�𝐴(𝑌) of proportion of people who have the sensitive characteristic
is

�̂�𝐴(𝑌) =
𝑌
𝑛 − 𝜋𝐵(1 − 𝛾)

𝛾
(6)

Using Bayes’ rule, the conditional probabilities that the respondent belongs to
groups A or B are calculated as follows:

𝑃𝐺(A| ¤𝑌) = 𝜋𝐴𝑃𝐺( ¤𝑌 | A)
𝑃∗
𝐺

(7)

where 𝑃∗
𝐺
( ¤𝑌 | A) = 𝜋𝐵 + (1 − 𝜋𝐵)𝛾, and 𝑃∗

𝐺
( ¤𝑌 | B) = 𝜋𝐵(1 − 𝛾). The expected

value of the estimator �̂�𝐴(𝑌) is

E(�̂�𝐴(𝑌)) = E

( 𝑌
𝑛 − (1 − 𝛾)𝜋𝐵

𝛾

)
=

𝑃∗
𝐺
− (1 − 𝛾)𝜋𝐵

𝛾

=
𝛾𝜋𝐴 + (1 − 𝛾)𝜋𝐵 − (1 − 𝛾)𝜋𝐵

𝛾
= 𝜋𝐴 (8)
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So, �̂�𝐴(Y) is an unbiased estimator of the population proportion 𝜋𝐴. The
variance of �̂�𝐴(𝑌) is [12]:

Var(�̂�𝐴(𝑌)) = Var

(
𝑃∗
𝐺
− (1 − 𝛾)𝜋𝐵

𝛾

)
=

𝜋𝐴(1 − 𝜋𝐴)
𝑛

+ (1 − 𝛾)2𝜋𝐵(1 − 𝜋𝐵) + 𝛾(1 − 𝛾)(𝜋𝐴 + 𝜋𝐵 − 2𝜋𝐴𝜋𝐵)
𝑛𝛾2

(9)

where 0 < 𝛾 ≤ 1 and 𝛾 ≠ 1
2 , using that Var

( (1 − 𝛾)𝜋𝐵

𝛾

)
= 0 because 𝛾 and 𝜋𝐵

are constants.

The Forced Method (FM) [10] is another RRT method, where the randomi-
sation device forces the respondent to answer ‘Yes’ to the selected question
with probability 𝛾1, or ‘No’ with probability 𝛾2, or to answer the sensitive
question with probability 𝛾, where 𝛾 = 1− 𝛾1 − 𝛾2 and 0 < 𝛾1 < 1, 0 < 𝛾2 < 1
and 𝛾1+𝛾2 < 1 [10]. Each response can result in one of two possible outcomes:
a Yes ( ¤𝑌) or a No ( ¤𝑁).

Assume a sample of size 𝑛, and random quantity 𝑌 is the number of people
who answer ‘Yes’ to the sensitive question they are asked. The probability of
a respondent answering ‘Yes’ is

𝑃∗
𝐹 = 𝛾1 + 𝜋𝐴(1 − 𝛾1 − 𝛾2) (10)

where 𝜋𝐴 is again the proportion of people who have the sensitive characteristic
A. The estimator of 𝜋𝐴 is

�̂�𝐴(𝑌) =
𝑌
𝑛 − 𝛾1

1 − 𝛾1 − 𝛾2
(11)

Using Bayes’ rule, the conditional probabilities of the event that the respondent
belongs to groups 𝐴 given the response ‘Yes’ or ‘No’ are

𝑃𝐹(A| ¤𝑌) = 𝜋𝐴𝑃𝐹( ¤𝑌 | A)
𝑃∗
𝐹

(12)

𝑃𝐹(Ā| ¤𝑌) = 𝜋�̄�𝑃𝐹( ¤𝑌 | �̄�)
𝑃∗
𝐹

(13)

where 𝑃∗
𝐹
( ¤𝑌 | A) = 1 − 𝛾2, and 𝑃∗

𝐹
( ¤𝑌 | Ā) = 𝛾1. The expected value of �̂�𝐴(𝑌) is

E(�̂�𝐴(𝑌)) = E

( 𝑌
𝑛 − 𝛾1

1 − 𝛾1 − 𝛾2

)
=

𝑃∗
𝐹
− 𝛾1

1 − 𝛾1 − 𝛾2
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=
𝛾1 + 𝜋𝐴(1 − 𝛾1 − 𝛾2) − 𝛾1

1 − 𝛾1 − 𝛾2
= 𝜋𝐴 (14)

So �̂�𝐴(Y) is an unbiased estimator of the population proportion 𝜋𝐴. The
variance of the estimator �̂�𝐴(𝑌) is [10]:

Var(�̂�𝐴(𝑌)) =Var

( 𝑌
𝑛 − 𝛾1

1 − 𝛾1 − 𝛾2

)
= Var

(
𝑃∗
𝐹

𝑛(1 − 𝛾1 − 𝛾2)2

)
=
𝜋𝐴(𝜋𝐴 − 1)

𝑛
+ 𝜋𝐴(𝛾2 − 𝛾1)

𝑛(1 − 𝛾1 − 𝛾2)
+ 𝛾1(1 − 𝛾1)

𝑛(1 − 𝛾1 − 𝛾2)2
(15)

Other RRT methods have been proposed, each with specific procedures
and assumptions, such as scenarios with studying reproducibility of statistical
inference based on data collected by these methods is an interesting topic for
future research, e.g. multiple randomisation devices [13–16]. Such methods are
not considered in this paper.

2.2 RRT efficiency comparison and privacy degree

When applying RRT methods, the efficiency and degree of privacy need to
be considered. The efficiency of randomised response methods refers to the
ability of these methods to accurately estimate the proportion of individuals
in a population who have a sensitive characteristic. An efficient randomised
response method produces estimates that are close to the true proportion of
people who have the sensitive characteristic. There are several measures of the
efficiency of RRT methods [9, 17]. Since the basic attention in this research
is the relationship between RP and the variation in reported RRT responses,
we do not take efficiency measures into account. However, RRT methods are
considered more efficient when reported responses have less variability.

Another fundamental challenge in RRT is how to provide accurate esti-
mates of the population proportion of people with sensitive characteristics
while maintaining respondents’ privacy. Several privacy measures have been
proposed for qualitative and quantitative randomised response methods, with
different implications for optimal study design. When there is a high degree
of privacy, respondents are more likely to participate in surveys and to
answer truthfully. If respondents are satisfied with their privacy, they reduce
bias resulting from false responses. Furthermore, protecting the privacy of
respondents is an essential ethical consideration.

Privacy measures typically involve conditional probabilities for the event
that the respondents have the sensitive characteristic 𝐴 given the response
‘Yes’ or ‘No’ [18, 19]. Clearly, the higher the conditional probability of belong-
ing to 𝐴, given a ‘Yes’ response, 𝑃(𝐴| ¤𝑌), the more embarrassing it may be to
provide that response even when the actual question being asked is unknown
to the interviewer. One RRT method could be considered more useful than
another if max(𝑃(𝐴| ¤𝑌), 𝑃(𝐴| ¤𝑁)) of the first RRT method is smaller than for
the second method [20].
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Zhimin and Zaizai [12] presented a method to measure the privacy of RRT
methods. To derive the privacy measure, remember that the conditional prob-
abilities of the event that a respondent has the sensitive characteristic A given
the response ‘Yes’ or ‘No’ are

𝑃(A| ¤𝑌) = 𝜋𝐴𝑃( ¤𝑌 |A)
𝑃∗ (16)

𝑃(Ā| ¤𝑌) = 𝜋𝐴𝑃( ¤𝑌 |Ā)
𝑃∗ (17)

Then, the proposed privacy measure Δ is:

Δ =

����1 − 1

2

(
𝑃( ¤𝑌 | A)
𝑃( ¤𝑌 | Ā)

+ 𝑃( ¤𝑁 | A)
𝑃( ¤𝑁 | Ā)

)���� (18)

where small values of Δ indicate a high privacy level because the conditional
probabilities 𝑃(𝐴| ¤𝑌) of the event that the respondents have the sensitive
characteristic A given the response ‘Yes’ or ‘No’ are close to 𝜋𝐴, which means

both
𝑃( ¤𝑌 | A)
𝑃( ¤𝑌 | �̄�) and

𝑃( ¤𝑁 | A)
𝑃( ¤𝑁 | Ā) close to 1, that hence Δ is close to 0.

The privacy degrees Δ𝐺𝐵 of the Greenberg Method, and Δ𝐹𝑀 of the Forced
Method as explained in Section 2.1 and using Equation (18) are

Δ𝐺𝐵 =

���� 𝛾(1 − 2𝜋𝐵(1 − 𝛾))
(2𝜋𝐵(1 − 𝛾)(1 − 𝜋𝐵(1 − 𝛾))

���� (19)

Δ𝐹𝑀 =

����𝛾1(3 − 2𝛾1) + 𝛾2(1 − 2𝛾1) − 1

2𝛾1(1 − 𝛾1)

���� (20)

We consider these measures together with reproducibility in Example 6.

3 Nonparametric Predictive Inference (NPI)

Nonparametric Predictive Inference (NPI) is a statistical method based on
Hill’s assumption 𝐴(𝑛) [21], which provides direct conditional probabilities for a
future observable random quantity based on observed values of related random
quantities [4, 22]. To introduce the assumption 𝐴(𝑛), suppose that there are
𝑛 + 1 real-valued random quantities, 𝑌1 , ..., 𝑌𝑛 , 𝑌𝑛+1. Assume that the ordered
observed values of the random quantities 𝑌1 , ..., 𝑌𝑛 are denoted by 𝑦1 < 𝑦2 <
... < 𝑦𝑛 , and define 𝑦0 = −∞ and 𝑦𝑛+1 = ∞. The 𝑛 observations split the real-
line into 𝑛 + 1 intervals 𝐼𝑖 = (𝑦𝑖−1 , 𝑦𝑖), where 𝑖 = 1, ..., 𝑛 + 1. The assumption
𝐴(𝑛) [21] for one future observation 𝑌𝑛+1 is

𝑃(𝑌𝑛+1 ∈ 𝐼𝑖) =
1

𝑛 + 1
for 𝑖 = 1, ..., 𝑛 + 1 (21)
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𝐴(𝑛) is a post-data assumption related to exchangeability [7]. The lower
and upper probabilities for the future observations 𝑌𝑛+1 ∈ 𝔄, for any 𝔄 ⊂ ℝ,
are [4, 22]:

𝑃(𝑌𝑛+1 ∈ 𝔄) =
𝑛+1∑
𝑖=1

1{𝐼𝑖 ⊆ 𝔄}𝑃(𝑌𝑛+1 ∈ 𝐼𝑖) =
1

𝑛 + 1

𝑛+1∑
𝑖=1

1{𝐼𝑖 ⊆ 𝔄} (22)

𝑃(𝑌𝑛+1 ∈ 𝔄) =
𝑛+1∑
𝑖=1

1{𝐼𝑖 ∩ 𝔄 ≠ ∅}𝑃(𝑌𝑛+1 ∈ 𝐼𝑖) =
1

𝑛 + 1

𝑛+1∑
𝑖=1

1{𝐼𝑖 ∩ 𝔄 ≠ ∅} (23)

where 1{𝐸} is the indicator function which is equal to 1 if event 𝐸 is true and
0 otherwise.

In NPI, De Finetti’s Fundamental Theorem of Probability [7] is used to
determine optimal bounds for the probability of an event of interest involv-
ing 𝑌𝑛+1 [4], given the probabilities in Equation (21). This theory has strong
consistency properties and provides reliable predictive results [4] in the theory
of imprecise probability [23] and interval probability [24]. NPI has been intro-
duced for several applications such as statistical process control [25, 26], the
field of trading [27] and the area of finance [28, 29].

3.1 NPI for Bernoulli random quantities

In this paper, NPI for Bernoulli random quantities is used [5]. It is based on
a latent variable representation of Bernoulli data. This presentation assumes
underlying real-valued quantities and a threshold so that values on one side of
the threshold are successes and values on the other side of the threshold are
failures. The consecutive assumptions 𝐴(𝑛) , ..., 𝐴(𝑛+𝑚−1) are used for linking
the 𝑚 future observations to the 𝑛 data observations.

Assume there is a sequence of 𝑛 + 𝑚 exchangeable Bernoulli trials, each
having the possible outcomes ‘success’ and ‘failure’, with data consisting of 𝑠
successes in 𝑛 trials. If 𝑌𝑛

1 denotes the random number of successes in trials 1
to 𝑛, then an adequate representation of the data for NPI is 𝑌𝑛

1 = 𝑠. Let 𝑌𝑛+𝑚
𝑛+1

denote the random number of successes in the future trials 𝑛 + 1 to 𝑛 + 𝑚.
Let 𝑅𝑡 = {𝑟1 , 𝑟2 , ..., 𝑟𝑡} with 1 ≤ 𝑡 ≤ 𝑛 + 1 and integer values 0 ≤ 𝑟1 < 𝑟2 <
... < 𝑟𝑡 ≤ 𝑚. The NPI upper probability [5, 30] for the event 𝑌𝑛+𝑚

𝑛+1 ∈ 𝑅𝑡 given
𝑌𝑛+𝑚
𝑛+1 = 𝑠, for 𝑠 ∈ {0, 1, ..., 𝑛}, is

𝑃(𝑌𝑛+𝑚
𝑛+1 ∈ 𝑅𝑡 |𝑌𝑛

1 = 𝑠) =
(
𝑛 + 𝑚

𝑛

)−1 𝑡∑
𝑗=1

[(
𝑠 − 𝑟 𝑗

𝑠

)
−
(
𝑠 − 𝑟 𝑗−1

𝑠

)] (
𝑛 − 𝑠 + 𝑚 − 𝑟 𝑗

𝑛 − 𝑠

)
(24)

It is assumed that all
(𝑛+𝑚

𝑛

)
orderings of the successes are equally likely.

The corresponding NPI lower probability can be derived using the conjugacy
property, that is 𝑃(𝐴) = 1 − 𝑃(𝐴𝑐) for any event 𝐴 and its complementary
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event 𝐴𝑐 , so

𝑃(𝑌𝑛+𝑚
𝑛+1 ∈ 𝑅𝑡 |𝑌𝑛

1 = 𝑠) = 1 − 𝑃(𝑌𝑛+𝑚
𝑛+1 ∈ 𝑅𝑐

𝑡 |𝑌𝑛
1 = 𝑠) (25)

where 𝑅𝑐
𝑡 = {0, 1, . . . , 𝑚}\𝑅𝑡 .

The NPI lower and upper probability for the events 𝑌𝑛+𝑚
𝑛+1 ≥ 𝑐 and 0 ≤ 𝑐 ≤

𝑛, are [5, 31]:

𝑃(𝑌𝑛+𝑚
𝑛+1 ≥ 𝑐 | 𝑌𝑛

1 = 𝑠) =1 −
(
𝑛 + 𝑚

𝑛

)−1
×
[ 𝑐−1∑
𝑙=1

(
𝑠 + 𝑙 − 1

𝑠 − 1

) (
𝑛 + 𝑚 − 𝑠 − 𝑙

𝑛 − 𝑠

)]
(26)

𝑃(𝑌𝑛+𝑚
𝑛+1 ≥ 𝑐 | 𝑌𝑛

1 = 𝑠) =
(
𝑛 + 𝑚

𝑛

)−1 [(
𝑠 − 𝑐

𝑠

) (
𝑛 + 𝑚 − 𝑠 − 𝑐

𝑛 − 𝑠

)
+

𝑛∑
𝑙=𝑐+1

(
𝑠 − 𝑙 − 1

𝑠 − 1

) (
𝑛 + 𝑚 − 𝑠 − 𝑙

𝑛 − 𝑠

)]
(27)

where 𝑠 ∈ {1, ..., 𝑛 − 1}. The minimum value of the NPI lower probability is
0.5, which happens when half of all orderings of the successes 𝑠 based on the
future test comes before the ordering of the successes 𝑟 based on the original
test due to the exchangeability assumption. This is shown in detail by Coolen
and BinHimd [3]. The maximum value of the NPI upper probability is 1 for
𝑌𝑛
1 = 0 and 𝑌𝑛

1 = 𝑛, which occurs if all outcomes in the original test are failures
or if all outcomes are successes, respectively [32].

If the observed data are all successes (so 𝑠 = 𝑛) or all failure (so 𝑠 = 0),
then the NPI upper probabilities for this event 𝑌𝑛+𝑚

𝑛+1 ≥ 𝑐 are:

𝑃(𝑌𝑛+𝑚
𝑛+1 ≥ 𝑐 |𝑌𝑛

1 = 𝑛) = 1 (28)

𝑃(𝑌𝑛+𝑚
𝑛+1 ≥ 𝑐 |𝑌𝑛

1 = 0) =
(
𝑛 + 𝑚

𝑛

)−1 (
𝑛 + 𝑚 − 𝑐

𝑛

)
(29)

and the NPI lower probabilities for this event 𝑌𝑛+𝑚
𝑛+1 ≥ 𝑐 are:

𝑃(𝑌𝑛+𝑚
𝑛+1 ≥ 𝑐 |𝑌𝑛

1 = 𝑛) = 1 −
(
𝑛 + 𝑚

𝑛

)−1 (
𝑛 + 𝑐 − 1

𝑛

)
(30)

𝑃(𝑌𝑛+𝑚
𝑛+1 ≥ 𝑐 |𝑌𝑛

1 = 0) = 0 (31)

3.2 NPI reproducibility

One important feature of practical research related to test results is the repro-
ducibility of a given test. The concept and understanding of reproducibility
have attracted more attention within the traditional frequentist statistical
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framework, encouraging further research and academic interest in the past few
years. The NPI method of frequentist statistics focuses explicitly on future
observations while making few assumptions and using lower and upper proba-
bilities to quantify uncertainty. This makes it possible to draw inferences about
reproducibility probability (RP) given the explicitly predictive nature of NPI.

NPI reproducibility was first introduced by Coolen and BinHimd [5],
denoted by NPI-RP, and defined as the probability that, if a test is repeated
based on an experiment performed in the same way as the original experiment,
the test outcome, that is, whether the null hypothesis is rejected or not, will be
the same. Coolen and BinHimd [5] considered a few basic nonparametric tests,
namely the sign test, Wilcoxon’s signed rank test, and the two sample rank
sum test [33]. NPI for Bernoulli quantities [32] and for real-valued data [34]
were used for these inferences. This led to NPI lower and upper reproducibil-
ity probabilities, denoted by 𝑅𝑃 and 𝑅𝑃, respectively, rather than precisely
determined reproducibility probabilities.

The NPI-RP method has also been presented for two basic tests using order
statistics [35]: a test for a specific population quantile value and a precedence
test for comparing data from two populations. These latter tests are typically
used for lifetime data experiments when one wishes to reach a conclusion
before all observations are available. For these inferences, NPI for future order
statistics is used to provide the lower and upper reproducibility probability for
quantile and basic precedence tests [35].

More research has been published on NPI-RP, such as NPI for test repro-
ducibility by sampling future data orderings [36]. In this work, Coolen and
Marques investigated the NPI reproducibility of likelihood ratio tests using
the test criterion in terms of the sample mean. This happens by taking into
account all orderings of 𝑚 future observations among the 𝑛 data observations,
all of which are equally likely based on an exchangeability assumption. How-
ever, because of the computing limitations of this method, exact lower and
upper probability can only be computed for very small values of 𝑛. Then, the
ordering sampling method is proposed to generate possible ordering of all sam-
ples for both exponential and normal distributions and it is examined how well
it works to approximate the NPI lower and upper reproducibility probability.

Furthermore, another study examines reproducibility probability for like-
lihood ratio tests [37] between two Beta distributions. For simple hypotheses,
the exact distribution is obtained using Gamma or Generalized Integer Gamma
distributions. For more complex cases, near-exact or asymptotic approxima-
tions are developed using logarithm transformation and characteristic function.
Numerical studies demonstrate the precision of the approximations, while
simulations analyse test power and reproducibility probability.

More investigation introduces a statistical reproducibility for pairwise t-
tests in pharmaceutical research using an NPI algorithm [38]. Simkus et al.
[38] studied the statistical reproducibility of pairwise t-tests in pharmaceuti-
cal product development. They compared the reproducibility of t-tests and
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Wilcoxon Mann-Whitney tests, and also considered the reproducibility of final
decisions based on multiple related t-tests.

4 Reproducibility of one-sided hypothesis tests
based on RRT data

Reproducibility of one-sided hypothesis tests based on data sampled using
randomised response methods (NPI-RP-RRT) considers how likely it is that
a future similar test of the null hypothesis will lead to the same conclusion
as the original test. In this paper, we restrict attention to qualitative data
collected using an RRT method. We consider the one-sided hypothesis test on
the proportion 𝜋𝐴 of people with a sensitive characteristic 𝐴:

𝐻′
0 : 𝜋𝐴 = 𝜋𝐴0 versus 𝐻′

1 : 𝜋𝐴 > 𝜋𝐴0 (32)

where 𝜋𝐴0 ∈ [0, 1]. Let 𝑃∗
𝐺
(𝑌 = ¤𝑌 | 𝐻′

0) = 𝑃∗
𝐺0

be the probability of a ‘Yes’

answer to the selected question for the Greenberg method (GB) based on the
proportion 𝜋𝐴0 , which is the proportion of people who have characteristic
𝐴. In this section, we use Equation (5) to link between 𝜋𝐴0 and 𝑃∗

𝐺0
, and

then investigate how the reproducibility probability is affected by 𝜋𝐴0 and
𝑃∗
𝐺0

under 𝐻0. Therefore, the hypothesis test in 𝑃∗
𝐺
, corresponding to the

hypothesis test using Equation (32), with level of significance 𝛼 = 0.05, is

𝐻0 : 𝑃∗
𝐺 = 𝑃∗

𝐺0
and 𝐻1 : 𝑃∗

𝐺 > 𝑃∗
𝐺0

(33)

This test can be performed based on the respondents’ answers. A logical
test rule is to reject the null hypothesis if 𝑌 ≥ 𝑐, where 𝑐 is determined, for
chosen significance level 𝛼, as the minimal integer value for which:

𝑃(𝑌 ≥ 𝑐 | 𝐻0) ≤ 𝛼 (34)

Let 𝑌𝑛
1 denote the random number of ‘Yes’ answers in the original sample and

𝑌2𝑛
𝑛+1 denote the random number of ‘Yes’ answers in the future sample. The

NPI upper and lower reproducibility probabilities for the event 𝑌2𝑛
𝑛+1 ≥ 𝑐, given

𝑌𝑛
1 = 𝑦, are

𝑅𝑃(𝑦) = 𝑃(𝑌2𝑛
𝑛+1 ≥ 𝑐 | 𝑌𝑛

1 = 𝑦), 𝑅𝑃(𝑦) = 𝑃(𝑌2𝑛
𝑛+1 ≥ 𝑐 | 𝑌𝑛

1 = 𝑦) (35)

If the random number of ‘Yes’ answers in the original test 1 to 𝑛 is less than
𝑐, so 𝐻′

0 is rejected, then the upper and lower reproducibility probabilities for
the event 𝑌2𝑛

𝑛+1 < 𝑐 are:

𝑅𝑃(𝑦) = 𝑃(𝑌2𝑛
𝑛+1 < 𝑐 | 𝑌𝑛

1 = 𝑦), 𝑅𝑃(𝑦) = 𝑃(𝑌2𝑛
𝑛+1 < 𝑐 | 𝑌𝑛

1 = 𝑦) (36)

Examples 1 and 2 illustrate this method.
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Table 1 NPI-RP-GB at 𝛼 = 0.05, 𝑐 = 22

𝑦 𝑅𝑃(𝑦) 𝑅𝑃(𝑦) 𝑦 𝑅𝑃(𝑦) 𝑅𝑃(𝑦) 𝑦 𝑅𝑃(𝑦) 𝑅𝑃(𝑦)
0 1.0000 1 11 0.9956 0.9980 22 0.5 0.6145
1 1.0000 1.0000 12 0.9909 0.9956 23 0.6145 0.7240
2 1.0000 1.0000 13 0.9824 0.9909 24 0.7240 0.8198
3 1.0000 1.0000 14 0.9680 0.9824 25 0.8198 0.8954
4 1.0000 1.0000 15 0.9449 0.9680 26 0.8954 0.9479
5 1.0000 1.0000 16 0.9101 0.9449 27 0.9479 0.9790
6 1.0000 1.0000 17 0.8605 0.9101 28 0.9790 0.9939
7 0.9999 1.0000 18 0.7941 0.8605 29 0.9939 0.9990
8 0.9997 0.9999 19 0.7102 0.7941 30 0.9990 1
9 0.9992 0.9997 20 0.6106 0.7102
10 0.9980 0.9992 21 0.5 0.6106

Table 2 NPI-RP-GB at 𝛼 = 0.01, 𝑐 = 23.

𝑦 𝑅𝑃(𝑦) 𝑅𝑃(𝑦) 𝑦 𝑅𝑃(𝑦) 𝑅𝑃(𝑦) 𝑦 𝑅𝑃(𝑦) 𝑅𝑃(𝑦)
0 1.0000 1 11 0.9981 0.9992 22 0.5 0.6145
1 1.0000 1.0000 12 0.9959 0.9981 23 0.5 0.6195
2 1.0000 1.0000 13 0.9916 0.9959 24 0.6195 0.7340
3 1.0000 1.0000 14 0.9837 0.9916 25 0.7340 0.8333
4 1.0000 1.0000 15 0.9702 0.9837 26 0.8333 0.9097
5 1.0000 1.0000 16 0.9483 0.9702 27 0.9097 0.9601
6 1.0000 1.0000 17 0.9149 0.9483 28 0.9601 0.9872
7 1.0000 1.0000 18 0.8666 0.9149 29 0.9872 0.9977
8 0.9999 1.0000 19 0.8007 0.8666 30 0.9977 1
9 0.9997 0.9999 20 0.7163 0.8007
10 0.9992 0.9997 21 0.6145 0.7163

Example 1 This example explains NPI reproducibility for one-sided hypothesis tests
based on data collected using the GB method (NPI-RP-GB). Suppose that we have a
sample of size 𝑛 = 30 and are interested in a sensitive characteristic 𝐴. The unknown
proportion of people with the sensitive characteristic is 𝜋𝐴0

= 0.7, and 𝜋𝐵 = 0.3 is
the proportion of people who would respond ‘Yes’ to the unrelated question. In this
example, we assume that a randomisation device is used with a probability 𝛾 = 0.7
that the sensitive question is asked. We want to test:

𝐻′
0 : 𝜋𝐴 = 0.7 versus 𝐻′

1 : 𝜋𝐴 > 0.7 (37)

with level of significance 𝛼 = 0.05. The hypothesis test on 𝑃∗
𝐺
, corresponding to the

hypothesis test in Equation (37), is

𝐻0 : 𝑃∗
𝐺
= 0.58 versus 𝐻1 : 𝑃∗

𝐺
> 0.58 (38)

The corresponding threshold value for this one-sided test is 𝑐 = 22 calculated using
Equation (34). Therefore, 𝐻0 is rejected at 0.05 level of significance if 𝑌𝑛

1 ≥ 23. Then,
the claim that the proportion of people who answer ‘Yes’ is 0.7 would be rejected at
the 0.05 significance level.

The NPI lower and upper reproducibility probabilities for the event 𝑌2𝑛
𝑛+1 ≥ 𝑐 = 23

under 𝐻0 are presented in Table 1. The minimum value of the lower reproducibility
probability is 0.5 as explained in Section 3.1. This happens for the values 𝑦 = 21 and
𝑦 = 22. Similarly, the NPI lower and upper reproducibility probabilities for the event
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Table 3 NPI-RP-FM with 𝛼 = 0.05, 𝜋𝐴0 = 0.7, 𝛾1 = 0.15, 𝛾2 = 0.10, 𝑐 = 24.

𝑦 𝑅𝑃(𝑦) 𝑅𝑃(𝑦) 𝑦 𝑅𝑃(𝑦) 𝑅𝑃(𝑦) 𝑦 𝑅𝑃(𝑦) 𝑅𝑃(𝑦)
0 1.0000 1 11 0.9993 0.9997 22 0.6195 0.7240
1 1.0000 1.0000 12 0.9983 0.9993 23 0.5 0.6195
2 1.0000 1.0000 13 0.9964 0.9983 24 0.5 0.6260
3 1.0000 1.0000 14 0.9925 0.9964 25 0.6260 0.7469
4 1.0000 1.0000 15 0.9854 0.9925 26 0.7469 0.8505
5 1.0000 1.0000 16 0.9731 0.9854 27 0.8505 0.9273
6 1.0000 1.0000 17 0.9527 0.9731 28 0.9273 0.9738
7 1.0000 1.0000 18 0.9210 0.9527 29 0.9738 0.9947
8 1.0000 1.0000 19 0.8742 0.9210 30 0.9947 1
9 0.9999 1.0000 20 0.8092 0.8742
10 0.9997 0.9999 21 0.7240 0.8092

Table 4 NPI-RP-FM with 𝛼 = 0.01, 𝜋𝐴0 = 0.7, 𝛾1 = 0.15, 𝛾2 = 0.10, 𝑐 = 25.

𝑦 𝑅𝑃(𝑦) 𝑅𝑃(𝑦) 𝑦 𝑅𝑃(𝑦) 𝑅𝑃(𝑦) 𝑦 𝑅𝑃(𝑦) 𝑅𝑃(𝑦)
0 1.0000 1 11 0.9998 0.9999 22 0.7340 0.8198
1 1.0000 1.0000 12 0.9994 0.9998 23 0.6260 0.7340
2 1.0000 1.0000 13 0.9986 0.9994 24 0.5 0.6260
3 1.0000 1.0000 14 0.9969 0.9986 25 0.5 0.6347
4 1.0000 1.0000 15 0.9937 0.9969 26 0.6347 0.7642
5 1.0000 1.0000 16 0.9875 0.9937 27 0.7642 0.8729
6 1.0000 1.0000 17 0.9765 0.9875 28 0.8729 0.9486
7 1.0000 1.0000 18 0.9580 0.9765 29 0.9486 0.9881
8 1.0000 1.0000 19 0.9284 0.9580 30 0.9881 1
9 1.0000 1.0000 20 0.8837 0.9284
10 0.9999 1.0000 21 0.8198 0.8837

𝑌2𝑛
𝑛+1 ≥ 𝑐 are presented in Table 2 for significance level 0.01, and the worst case for

NPI lower reproducibility probability under the assumed model is 0.5 for the values
𝑦 = 22 and 𝑦 = 23.

If the original test leads to rejection of 𝐻′
0 : 𝜋𝐴 = 0.7 for the event 𝑌𝑛

1 ≥ 𝑐 =

22 at 𝛼 = 0.05, then the NPI reproducibility probability is the probability that
the null hypothesis will also be rejected in the future test. Then, the NPI lower
reproducibility and the NPI upper reproducibility probabilities for the event 𝑌𝑛

1 > 22

has the probability of 𝑦 > 23: 𝑅𝑃(𝑦) = 𝑅𝑃(𝑦 − 1) due to 𝑃(𝑌2𝑛
𝑛+1 ≥ 𝑐 |𝑌𝑛

1 = 𝑦) =

𝑃(𝑌2𝑛
𝑛+1 ≥ 𝑐 |𝑌𝑛

1 = 𝑦 − 1). Conversely, if the reproducibility probability of 𝑌𝑛
1 which

is less than the rejection threshold 𝑐 = 22, the NPI lower and upper probabilities of
the events 𝑌𝑛

1 < 21, which is 𝑅𝑃(𝑦) = 𝑅𝑃(𝑦 + 1) for 𝑌𝑛
1 < 21 due to 𝑃(𝑌2𝑛

𝑛+1 < 𝑐 |𝑌𝑛
1 =

𝑦) = 𝑃(𝑌2𝑛
𝑛+1 < 𝑐 |𝑌𝑛

1 = 𝑦 + 1).
In Tables 1 and 2, the NPI lower and upper reproducibility probabilities are

presented and can be drawn as a line-segment between these values, based on data
collected from the GB at significance level 𝛼 = 0.05 and 𝛼 = 0.01, with rejec-
tion threshold values 22 and 23 respectively. The larger value of the NPI lower and
upper reproducibility probabilities suggest that a test gets the same outcome as the
hypothesis test, with a probability close to 1.
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Example 2 This example introduces the reproducibility probability for one-sided
hypothesis tests with data collected using the Forced Method. Assume that a sample
of size 𝑛 is taken from a population with a possible sensitive characteristic 𝐴. Suppose
that the 𝐻0 value which we want to test is 𝜋𝐴0

= 0.7. The randomisation device
leads to the sensitive question being asked with probability 𝛾 = 0.75, or the answer is
forced to ‘Yes’ with probability 𝛾1 = 0.10 or forced to ‘No’ with probability 𝛾2 = 0.15.
The significance level for the hypothesis test is 𝛼 = 0.05.

To start with, assume a sample with size 𝑛 = 30, the null hypothesis that the
proportion of people who have characteristic 𝐴 is 𝐻′

0 : 𝜋𝐴 = 0.7, which is tested
against 𝐻′

1 : 𝜋𝐴 > 0.7. So, the hypothesis test is

𝐻′
0 : 𝜋𝐴 = 0.7 vs 𝐻′

1 : 𝜋𝐴 > 0.7 (39)

Using Equation (10), this hypothesis test corresponds to the test:

𝐻0 : 𝑃∗
𝐹
= 0.625 vs 𝐻1 : 𝑃∗

𝐹
> 0.625 (40)

where the probability 𝑃∗
𝐹0

of a respondent saying ‘Yes’, using Equation (10), is

𝑃∗
𝐹0

= 𝛾1 + 𝜋𝐴0
(1 − 𝛾1 − 𝛾2) = 0.625 (41)

The threshold value for this one-sided test is 𝑐 = 24. Consequently, the null
hypothesis 𝐻0 is rejected when the observed value of 𝑌𝑛

1 is greater than or equal to
24; otherwise, the null hypothesis is not rejected. Similarly, the threshold value for
this one-sided test is 𝑐 = 25 at the significance level of 0.01. The NPI lower and upper
probabilities for the event 𝑌2𝑛

𝑛+1 ≥ 𝑐, based on the FM data, are presented in Tables 3
and 4. The threshold values in Tables 3 and 4 are greater than the threshold values
of reproducibility probability of statistical tests based on the GB data as presented
in Tables 1 and 2.

As shown in Tables 3 and 4, the NPI lower and upper reproducibility probabilities
based on FM data increase more than the NPI lower and upper reproducibility
probabilities based on GB data as shown in Tables 1 and 2. In addition, the NPI lower
reproducibility probabilities are closer to the NPI upper reproducibility probabilities
based on FM data than the NPI lower reproducibility probabilities are closer to the
NPI upper reproducibility probabilities based on GB data.

In general, the NPI lower and upper reproducibility probabilities based on FM
data are greater than the NPI lower and upper reproducibility probabilities based on
GB data, as shown in Tables 1 and 2 and Tables 3 and 4 respectively. Furthermore,
the NPI lower reproducibility probabilities based on FM data are closer than the NPI
upper reproducibility probabilities and the NPI lower reproducibility probabilities
based on GB data.

5 A measure of reproducibility for statistical
hypothesis tests

One objective of the study of reproducibility of hypothesis tests based on RRT
methods is to compare RRT methods with regard to such reproducibility.
This is non-trivial, particularly if the different RRT methods require differ-
ent sample sizes to achieve a similar level of significance and power for a
specific alternative hypothesis. In this section, we propose a new measure of
reproducibility for such comparisons.
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5.1 A measure of lower reproducibility for statistical
hypothesis tests

The measure of the lower reproducibility probability under 𝐻0 (MRP𝑙
0(𝑧))

is the probability, under 𝐻0, for the event that 𝑅𝑃(𝑌) ≥ 𝑧, for 𝑧 ∈ [0, 1].
Therefore, with a sample of size 𝑛 and probability 𝑃∗

0 of a ‘Yes’ answer under

𝐻0, MRP𝑙
0 under 𝐻0 for the one-sided test is

𝑀𝑅𝑃 𝑙
0(𝑧) = 𝑃(𝑅𝑃(𝑌) ≥ 𝑧 |𝐻0) = 𝑃[𝑅𝑃(𝑌) ≥ 𝑧 |𝑌 ∼ Bin(𝑛, 𝑃∗

0)]

= 1 −
𝑏(𝑧)∑

𝑦=𝑎(𝑧)

(
𝑛

𝑦

)
(𝑃∗

0)
𝑦(1 − 𝑃∗

0)𝑛−𝑦 (42)

where 𝑎(𝑧) and 𝑏(𝑧) are any two 𝑦 values for any two consecutive 𝑅𝑃(𝑌)
values. Due to the fact that MRP𝑙

0(𝑧) is based on the NPI lower reproducibility

probability and that its lowest value is 0.5, so 𝑀𝑅𝑃 𝑙
0(𝑧) = 1 for 𝑧 ∈ [0, 0.5).

The probability 𝑃∗
0, in this paper, depends on the RRT method used, so it

is either 𝑃∗
𝐺0

or 𝑃∗
𝐹0
, which are derived from Equations (5) or (10) in Section

2.1. To apply this measure, we specify all the values of 𝑦 = 𝑎(𝑧) and 𝑦 = 𝑏(𝑧)
for any two consecutive 𝑅𝑃(𝑌) values where 𝑅𝑃(𝑌) ≥ 𝑧, and then calculate
the summation of probabilities of all these 𝑌 = 𝑦 values except [𝑎(𝑧), 𝑏(𝑧)] as
shown in Equation(42) such that 𝑎(𝑧) is the lowest integer values such that the
condition 𝑅𝑃(𝑦) ≥ 𝑧 for 𝑦 < 𝑎(𝑧) is selected. Similarly, the 𝑏(𝑧) is the largest
integer value such that the condition 𝑅𝑃(𝑦) ≥ 𝑧 for each 𝑦 > 𝑏(𝑧) is selected.

Similarly, we can investigate the measure of reproducibility under the alter-
native hypothesis 𝐻1 : 𝑃∗ > 𝑃∗

0, where the probability of people who say ‘Yes’
under 𝐻1 is 𝑃∗

1 which is not a single value. These values 𝑃∗
1 can be selected to

provide high power more than 0.90 for the statistical hypothesis test. So, the
measure of lower reproducibility probability under 𝐻1 is:

𝑀𝑅𝑃 𝑙
1(𝑧) = 𝑃(𝑅𝑃(𝑌) ≥ 𝑧 |𝐻1) = 𝑃[𝑅𝑃(𝑌) ≥ 𝑧 |𝑌 ∼ 𝐵𝑖𝑛(𝑛, 𝑃∗

1)]

= 1 −
𝑏(𝑧)∑

𝑦=𝑎(𝑧)

(
𝑛

𝑦

)
(𝑃∗

1)
𝑦(1 − 𝑃∗

1)𝑛−𝑦 (43)

where 𝑃∗
1 represents the probability of people who say ‘Yes’ to the selected

question under the hypothesis 𝐻1. The probability 𝑃∗
1 depends on the RRT

method used, so it is either 𝑃∗
𝐺1

or 𝑃∗
𝐹1
, which are derived from Equations (5)

and (10) in Section 2.1, which relate to 𝐻1. Example 3 illustrates this measure
using the Greenberg method as explained in Section 2.1.

It is noticed that the alternative hypothesis 𝐻1 : 𝑃∗ > 𝑃∗
0 where the values of

𝑃∗
1 are greater than 𝑃∗

0 and less than 1. Therefore, we linked between the power
and the alternative hypothesis because power is defined as the probability of
being able to reject the null hypothesis correctly in the case that the alternative
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Fig. 1 MRP𝑙
0(𝑧) and MRP𝑙

1(𝑧) with GB data with 𝑛 = 30, 𝜋𝐴0 = 0.7, 𝜋𝐴1 = 0.9, 𝜋𝐵 = 0.3,
𝛾 = 0.7, 𝛼 = 0.05, 𝑃∗

𝐺0
= 0.58, 𝑃∗

𝐺1
= 0.72

hypothesis is true, then power is equal to 1 minus the probability of Type II
error 𝛽 in the event that the alternative hypothesis is true. So, in order to
increase power and the probability that the alternative hypothesis would come
true, we select 𝛽 = 0.1 and 𝑃∗

1 = 0.9.

Example 3 This example illustrates the measure of reproducibility probability
(MRP𝑙

0) for one-sided hypothesis tests using data collected by the GB method [11].
We use the same parameters of the GB method of 𝑛, 𝜋𝐴0

, 𝜋𝐵 and 𝛾 in Example 1.
We want to test the null hypothesis 𝐻′

0 : 𝜋𝐴 = 0.7 against the alternative hypothesis
𝐻′

1 : 𝜋𝐴 > 0.7. The corresponding null hypothesis 𝐻0 : 𝑃∗
𝐺

= 0.58 against the
alternative hypothesis 𝐻1 : 𝑃∗

𝐺
> 0.58 using Equation (5) of the GB method. Under

the null hypothesis 𝐻′
0, assume that 𝜋𝐴0

= 0.7 and under alternative hypothesis 𝐻′
1,

suppose that 𝜋𝐴1
= 0.9, so the proportion under 𝐻0 and 𝐻1 are:

𝑃∗
𝐺0

= 𝛾𝜋𝐴0
+ (1 − 𝛾)𝜋𝐵 = 0.58 (44)

𝑃∗
𝐺1

= 𝛾𝜋𝐴1
+ (1 − 𝛾)𝜋𝐵 = 0.72 (45)

The MRP𝑙
0 and MRP𝑙

1 are calculated as explained in Section 5.1. The results

for MRP𝑙
0 and MRP𝑙

1 for different values of 𝑧 are shown in Figure 1 and Tables

2 and 3, respectively. It has been observed that the MRP𝑙
0(𝑧) and MRP𝑙

1(𝑧) show
a decreasing trend when the value of 𝑧 increases. In the case that the values of 𝑧

get closer to 1, they cause MRP𝑙
0(𝑧) and MRP𝑙

1(𝑧) to decrease because of the lower
reproducibility probabilities get higher values due to the number of ‘Yes’ responses 𝑦
is close to either 0 or the total number of responses 𝑛. In both cases, these responses
provide substantial support for either the null or alternative hypothesis, and the NPI
lower reproducibility probabilities indicate that if all responses are ‘Yes’ (‘No’), the
responses do not provide evidence against the possibility that the responses are ‘No’
(‘Yes’).
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Table 5 MRP𝑙
0(𝑧) with GB data with 𝑛 = 30, 𝜋𝐴0 = 0.7, 𝜋𝐴1 = 0.9, 𝜋𝐵 = 0.3, 𝛾 = 0.7,

𝛼 = 0.05, 𝑃∗
𝐺0

= 0.58, 𝑃∗
𝐺1

= 0.72

𝑧 MRP𝑙
0(𝑧) 𝑧 MRP𝑙

0(𝑧) 𝑧 MRP𝑙
0(𝑧)

0.5000 0.9020 0.8954 0.3667 0.9939 0.0151
0.6106 0.8067 0.9101 0.2400 0.9956 0.0056
0.6145 0.7898 0.9449 0.1420 0.9980 0.0018
0.7102 0.6644 0.9479 0.1419 0.9990 0.0018
0.7240 0.6575 0.9680 0.0755 0.9992 0.0005
0.7941 0.5137 0.9790 0.0754 0.9997 0.0001
0.8198 0.5115 0.9824 0.0358 0.9999 0.0000
0.8605 0.3673 0.9909 0.0151 1.0000 0.0000

Table 6 MRP𝑙
1(𝑧) with GB data with 𝑛 = 30, 𝜋𝐴0 = 0.7, 𝜋𝐴1 = 0.9, 𝜋𝐵 = 0.3, 𝛾 = 0.7,

𝛼 = 0.05, 𝑃∗
𝐺0

= 0.58, 𝑃∗
𝐺1

= 0.72

𝑧 MRP𝑙
1(𝑧) 𝑧 MRP𝑙

1(𝑧) 𝑧 MRP𝑙
1(𝑧)

0.5000 0.6866 0.8605 0.0721 0.9824 0.0009
0.6106 0.5618 0.8954 0.0392 0.9909 0.0007
0.6145 0.4181 0.9101 0.0254 0.9939 0.0001
0.7102 0.3299 0.9449 0.0197 0.9956 0.0001
0.7240 0.2221 0.9479 0.0071 0.9980 0.0001
0.7941 0.1678 0.9680 0.0050 0.9990 0.0000
0.8198 0.1013 0.9790 0.0016

The reproducibility probabilities included in MRP𝑙
0(𝑧) and MRP𝑙

1(𝑧) area close

to 1 for all values of 𝑧 within the range of 0 to 0.6. Both MRP𝑙
0(𝑧) and MRP𝑙

1(𝑧) have
values on nearby to 0 when 𝑧 = 1. The values of MRP𝑙

1 are greater than the values

of MRP𝑙
0 for all values of 𝑧 inside the interval [0, 1] if the GB has a large threshold

value or large 𝑃∗
1 under 𝐻1. Variations in the MRP𝑙

0(𝑧) and MRP𝑙
1(𝑧) are caused by

variations in the method’s parameters 𝛾, 𝜋𝐴0
, 𝜋𝐵, and 𝛼. When these values are

increased, there is a corresponding increase in MRP𝑙
0(𝑧) and MRP𝑙

1(𝑧) respectively.
The upper reproducibility probabilities can be used to derive MRP𝑢

0 (𝑧) and

MRP𝑢
1 (𝑧) for the RRT methods, similar to the derivation of MRP𝑙

0(𝑧) and MRP𝑙
1(𝑧)

of the lower reproducibility probabilities. Furthermore, the FM technique or other
RRT methods can be used to make a comparison between them.

However, the RRT method parameters must be chosen carefully in order to calcu-
late the minimum required sample size to obtain the required power of the hypothesis
tests and with a specific significance level that can provide a high reproducibility
probability of hypothesis tests based on RRT data, as applied in Example 4.

To determine the minimum sample size 𝑛𝑟 required for this case for getting an
approximate power (i.e. 1−𝛽) at a level of significance of (i.e., 𝛼 = 0.05), use Equation
(46) [39].

⌈𝑛𝑟⌉ ≥
[
𝑧1−𝛼

√
𝑃∗
0(1 − 𝑃∗

0) + 𝑧1−𝛽
√
𝑃∗
1(1 − 𝑃∗

1)
𝑃∗
1 − 𝑃∗

0

]2
(46)

where the approximate power is calculated using [39]:

1 − 𝛽 ≈ 𝑃

(
𝑍 ≥

𝑛(𝑃∗
0 − 𝑃∗

1) + 𝑧1−𝛼
√
𝑛𝑃∗

0(1 − 𝑃∗
0)√

𝑛𝑃∗
1(1 − 𝑃∗

1)

)
(47)
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The value of 𝑧1−𝛼 and 𝑧1−𝛽 indicate to the (1− 𝛼) × 100 and (1− 𝛽) × 100 percentiles
of standard normal distribution respectively. If the hypothesis tests do not provide
a required power of 0.90 with sample size 𝑛𝑟 , Fleiss et.al [15] recommended adding

1
|𝑃∗

1−𝑃∗
0 |

as a continuity correction to ⌈𝑛𝑟⌉.

𝑛 = ⌈𝑛𝑟⌉ +
1

|𝑃∗
1 − 𝑃∗

0 |
(48)

where ⌈𝑛𝑟⌉ is the minimal integer greater than or equal to 𝑛𝑟 , and the probability 𝑃∗
0

are 𝑃∗
𝐺0

or 𝑃∗
𝐹0

which are derived from Equations (5) or (10) in Section 2.1 under 𝐻0.

5.2 The area under MRP (AUMRP)

In Section 5.1, we introduce MRP as a measurement of reproducibility prob-
ability of statistical tests based on data collected by the GB and the FM
methods. In order to compare the reproducibility probability of statistical
tests based on different RRT methods, we introduce an overall measure based
on MRP, namely the area under MRP(𝑧) under 𝐻0 and under 𝐻1 which are
denoted by AUMRP𝑙

0(𝑧) and AUMRP𝑙
1(𝑧), respectively. Given MPR𝑙

0(𝑧) and
MPR𝑙

1(𝑧), computed by Equations (42) and (43), the AUMRP0 and AUMRP1

are calculated as follows.
Let 𝐴𝑈𝑀𝑅𝑃 : [0, 1] → ℝ be a function defined on a closed interval

[0, 1] of the real numbers, ℝ, and 𝐷 as a partition of the interval [0, 1].
Let 𝑧𝑖 represent the real number that bounds each subinterval on the
number line. Here, 𝑖 ranges from 0 to 𝑛, and 𝐷 is defined as follows:
𝐷 = {[𝑧0 , 𝑧1], [𝑧1 , 𝑧2], . . . [𝑧𝑛−1 , 𝑧𝑛]} where 0 = 𝑧0 < 𝑧1 < 𝑧2 < · · · < 𝑧𝑛 = 1.
Therefore, AUMRP𝑙

0 and AUMRP𝑙
1 over [0, 1] with partition 𝐷 are

𝐴𝑈𝑀𝑅𝑃 𝑙
0 =

𝑛∑
𝑖=1

𝑀𝑅𝑃 𝑙
0(𝑧∗𝑖 )Δ𝑧𝑖 (49)

𝐴𝑈𝑀𝑅𝑃 𝑙
1 =

𝑛∑
𝑖=1

𝑀𝑅𝑃 𝑙
1(𝑧∗𝑖 )Δ𝑧𝑖 (50)

where Δ𝑧𝑖 = 𝑧𝑖 − 𝑧𝑖−1 where 𝑧∗
𝑖
∈ [𝑧𝑖−1 , 𝑧𝑖]. Example 3 introduces MRP𝑙

0 and

MRP𝑙
1 of the GB method.

Example 4 This example derives AUMPR𝑙
0 and AUMRP𝑙

1 of one-sided hypothesis
tests based on the GB method [11] using the minimum required sample size as
explained in Section 5.1 to get high reproducibility. We use the same combinations
of the GB method of 𝜋𝐴0

, 𝜋𝐵 and 𝛾 in Example 1.
Assume that 𝐻0 and 𝐻1 values which we want to test are 𝜋𝐴0

= 0.7 and 𝜋𝐴1
=

0.9, respectively, with significance level 𝛼 = 0.05 and power 0.90. Then, we derive
AUMPR𝑙

0 and AUMRP𝑙
1 using Equations (49) and (50) and using the minimum

required sample size 𝑛.
As shown in Table 7, the results give the required minimum sample sizes for differ-

ent values of 𝜋𝐵. So, if 𝜋𝐵 = 0.10, then the threshold value is 71, the AUMRP𝑙
0 equals
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Table 7 AUMRP𝑙
0, AUMRP𝑙

1of the GB method with 𝛾 = 0.7, 𝜋𝐴0 = 0.7, 𝜋𝐴1 = 0.9,
𝛼 = 0.05, 𝛽 = 0.1

𝜋𝐵 0 0.1 0.25 0.3 0.45 0.6
𝑛 121 119 115 113 106 98
𝑐 68 71 74 74 74 73

𝑃∗
𝐺0

0.4900 0.5200 0.5650 0.5800 0.6250 0.6700

𝑃∗
𝐺1

0.6300 0.6600 0.7050 0.7200 0.7650 0.8100

power 0.9262 0.9123 0.9090 0.9227 0.9316 0.9313

AUMRP𝑙
0 0.8070 0.8190 0.8225 0.8112 0.8029 0.8049

AUMRP𝑙
1 0.8235 0.8114 0.8087 0.8200 0.8281 0.8278

Table 8 The AUMRP𝑙
0, AUMRP𝑙

1 of the FM method with 𝜋𝐴0 = 0.7, 𝜋𝐴1 = 0.9,
𝛾2 = 0.10, 𝛼 = 0.05, 𝛽 = 0.1

𝛾1 0.10 0.13 0.15 0.23 0.27 0.29
𝑛𝑟 76 80 84 100 109 115
𝑐 57 60 64 77 85 90

𝑃∗
𝐹0

0.6600 0.6690 0.6750 0.6990 0.7110 0.7170

𝑃∗
𝐹1

0.8200 0.8230 0.8250 0.8330 0.8370 0.8390

power 0.9210 0.9367 0.9124 0.9358 0.9275 0.9315

AUMRP𝑙
0 0.8122 0.7966 0.8200 0.8010 0.8073 0.8047

AUMRP𝑙
1 0.8194 0.8335 0.8119 0.8319 0.8238 0.8274

0.8190 and AUMRP𝑙
1 equals 0.8114 with power is 0.9123, whereas the AUMRP𝑙

0

equals to 0.8225 and AUMRP𝑙
1 equals to 0.8087 for 𝜋𝐵 = 0.25 with threshold value is

74 and power is 0.9090. It is noted that for all values of 𝜋𝐵 ∈ [0, 0.6], AUMRP𝑙
0 and

AUMRP𝑙
1 taking values between 0.80 and 0.81 and the AUMRP𝑙

1 is always greater

than the AUMRP𝑙
0 except the case of 𝜋𝐵 = 0.1 and 0.25. Similarly, we drive AUMPR𝑙

0

and AUMRP𝑙
1 of one-sided hypothesis tests based on the FM method using the same

procedure as explained in Example 5.

Example 5 This example derives AUMPR𝑙
0 and AUMRP𝑙

1 of one-side hypothesis
tests using the FM method. Assume that the probability of being asked the sensitive
question is 0.75, the forced ‘Yes’ answer is 𝛾1 = 0.10 and the forced ‘No’ answer is
𝛾2 = 0.15, where the significance level is 𝛼 = 0.05, and power 0.90.

Let us consider that the 𝐻0 value which we want to test is 𝜋𝐴0
= 0.7, while the

alternative proportion of people with the sensitive characteristic is 𝜋𝐴1
= 0.90. For

varying values of 𝛾2, the required minimum sample sizes and values of AUMRP𝑙
0 and

AUMRP𝑙
1 are determined.

Table 8 presents the values of AUMRP𝑙
0 and AUMRP𝑙

1 for the FM method under
the null hypothesis 𝐻0 and the alternative hypothesis 𝐻1, calculated using Equations
(49) and (50), respectively. The values of AUMRP𝑙

0 are within the range of 0.79 to

0.82 while AUMRP𝑙
1 takes values within the range of 0.81 to 0.83. The AUMRP𝑙

0 is

always greater than the AUMRP𝑙
1 except in the case of 𝛾1 = 𝛾2 = 0.15. Nevertheless,

the patterns of AUMRP𝑙
0 or AUMRP𝑙

1 are not clear. The FM method requires a
smaller sample size (𝑛𝑟 = 76) compared to the GB method (𝑛 = 121) in order to
reach a power of 0.92 and obtain value 0.81 of the AUMRP𝑙

0 and AUMRP𝑙
1.
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Table 9 The Var(�̂�𝐴0 )𝐺𝐵 AUMRP𝑙
0, AUMRP𝑙

1 of one-sided tests based on the GB
method with 𝜋𝐵 = 0.4, 𝛾 = 0.5554, 𝜋𝐴1 = 0.9, 𝑃∗

𝐺1
= 0.6777, 𝛼 = 0.05, 𝛽 = 0.1, Δ𝐺𝐵 = 1.224

𝜋𝐴0 0.570 0.575 0.580 0.585 0.590 0.595 0.600 0.700
Var(�̂�𝐴0 )𝐺𝐵 0.8103 0.8104 0.8105 0.8104 0.8104 0.8103 0.8101 0.7961

𝑛 72 74 76 78 80 83 85 181
𝑃∗
𝐺0

0.4944 0.4972 0.5000 0.5027 0.5055 0.5083 0.5110 0.5666

Power 0.9075 0.9183 0.9278 0.9363 0.9126 0.9100 0.9200 0.9262

AUMRP𝑙
0 0.8207 0.8121 0.8033 0.7945 0.8154 0.8193 0.8098 0.8103

AUMRP𝑙
1 0.8097 0.8184 0.8267 0.8348 0.8133 0.8110 0.8192 0.8218

Now, it is worth to compare the reproducibility of statistical tests based on
different RRT methods, taking into account the variance of the estimators and repro-
ducibility of statistical hypothesis tests at the same degree of privacy. In order to
increase the reproducibility probability, we choose the required minimum sample size
when using the GB and FM methods while selecting different parameters for the RRT
methods to get equivalent privacy and variance for the estimator �̂�𝐴0

. This is due
to the study of the relationship between using required minimum sample sizes and
reproducibility probability at the same degree of privacy. This choice of the param-
eters gives the same values of both variances of the estimator �̂�𝐴0

and the same
privacy degree of the GB and FM method to check the changes in reproducibility of
statistical hypothesis tests as assumed in Example 6.

Example 6 Assume that we use the requird minimum sample size 𝑛 of the parame-
ters 𝛾 = 0.5554, 𝜋𝐴1

= 0.9 of the GB method, and 𝛾1 = 0.20829, 𝛾2 = 0.10, 𝜋𝐴1
= 0.9,

𝛼 = 0.05, 𝛽 = 0.1 as parameters of the FM method.
The aim of this example is to compare the GB and FM methods throughout

various values of 𝜋𝐴0
, specifically focusing on their reproducibility. Both methods

are assumed to have the same privacy degree of approximately 1.224 but differ in
regards to the variance of the estimator �̂�𝐴0

. Tables 9 and 10 provide the relevant
details for this comparison.

The variance for various values of �̂�𝐴0
ranging from 0.79 to 0.81 is presented in

Table 9 for the GB technique with a privacy degree of Δ𝐺𝐵 = 1.224. Both AUMRP𝑙
0

and AUMRP𝑙
1 show no visible pattern, with a high power level of more than 0.90.

The value of AUMRP𝑙
0 shows a range of values from 0.79 to 0.82, whereas AUMRP𝑙

0
displays a range of values from 0.80 to 0.83 for varying 𝜋𝐴0

.
The FM method with privacy degree, denoted as Δ𝐹𝑀 = 1.224, has reduced

variance for various values of 𝜋𝐴0
compared to the variance of the estimator of the

GB, as seen in Table 10. The AUMRP𝑙
0 and AUMRP𝑙

1 show no apparent trend, and

the power is more than 0.90. The value of AUMRP𝑙
0 shows a range of values between

0.78 and 0.81, whereas AUMRP𝑙
0 shows a range of values between 0.86 and 0.88 for

varying 𝜋𝐴0
. The estimator of the FM method has a smaller variance compared to

the estimator of the GB methods, although the AUMRP𝑙
0 of the GB method shows

higher reproducibility than the FM method. Conversely, the AUMRP𝑙
1 of the FM

method shows more reproducibility than the GB method when both are given the
same privacy degree of 1.224.

As evidenced by the information presented in Tables 9 and 10, while the variances
of the estimator �̂�𝐴0

are low in order to improve reproducibility, it could be less
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Table 10 The Var(�̂�𝐴0 )𝐹𝑀 , AUMRP𝑙
0, AUMRP𝑙

1 of one-sided tests based on FM method
with 𝛾2 = 0.10, 𝛾1 = 0.20829, 𝜋𝐴1 = 0.9, 𝑃∗

𝐹1
= 0.8308, 𝛼 = 0.05, 𝛽 = 0.1, Δ𝐹𝑀 = 1.224

𝜋𝐴0 0.570 0.575 0.580 0.585 0.590 0.595 0.600 0.700
Var(�̂�𝐴0 )𝐹𝑀 0.2554 0.2546 0.2539 0.2531 0.2523 0.2515 0.2507 0.2351

𝑛 49 50 52 53 55 56 58 117
𝑃∗
𝐹0

0.6026 0.6060 0.6095 0.6129 0.6164 0.6199 0.6233 0.6925

Power 0.9041 0.9020 0.9052 0.9026 0.9050 0.9019 0.9716 0.9672

AUMRP𝑙
0 0.7958 0.8035 0.7843 0.7913 0.8113 0.8173 0.7973 0.8102

AUMRP𝑙
1 0.8769 0.8690 0.8881 0.8808 0.8658 0.8581 0.8776 0.8690

possible to assume the parameters mentioned above in order of reducing the level
of privacy. Hence, it is essential to consider several hypothetical values and different
parameters in order to achieve an equivalent level of privacy with less variability in
the actual responses and higher reproducibility.

6 Concluding remarks

This paper introduces an innovative method to assess the reproducibility prob-
ability of statistical hypothesis tests using data obtained by RRT methods,
including the GB and FM methods. This approach uses the number of ‘Yes’
responses within a specific sample and the threshold to perform the tests.
Next, use the Nonparametric Predictive Inference (NPI) method for Bernoulli
variables in order to calculate the lower and upper reproducibility probabil-
ity of one-sided hypothesis tests. The advantage of employing reproducibility
of statistical tests is that they can be designed for any RRT method because
this method depends on the number of orderings of yes responses, not on the
binomial distribution.

For reproducibility of one-sided hypothesis tests, we introduced the mea-
surement of lower and upper reproducibility probability MRP𝑙

0 and MRP𝑙
1

under 𝐻0 using the threshold values. Then, we compared the GB and the FM
methods by derivation of the required minimum sample size with respect to a
higher power of more than 0.90 and 𝛼 = 0.05. After that, we calculated the
area under MRP𝑙

0 and MRP𝑙
1. In addition, derive the lower and upper thresh-

old values to find the same area of the threshold value of MRP𝑙
0 and MRP𝑙

1

using different parameters of the RRT method. The finding is the GB method
has more reproducibility than the FM methods for one-sided tests under 𝐻0

especially if both methods have the same sample size, the threshold value or
the probability of people who say ‘Yes’. Conversely, the FM method has more
reproducibility than the GB methods for one-sided tests under 𝐻1.

For using the required minimum sample size, the same privacy degree, and
with the same proportion of sensitive characteristics in the population 𝜋𝐴0 , the
FM method takes smaller samples than the GB method requires. As a result,
choosing the same parameters within significance level 𝛼 = 0.05 and power
more than 0.90 needs to increase the sample size of the GB method than the
FM method to obtain the AUMRP𝑙

0 and AUMRP𝑙
1 for one-sided tests with
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the same privacy degree. In addition, high reproducibility of hypothesis tests
based on a randomised response method provides a probability, denoted as 𝑃∗

0

(𝑃∗
1), which represents the probability of people that respond ‘Yes’ and close

to the 𝐻0 and 𝐻1 values which we want to test are 𝜋𝐴0 (𝜋𝐴1), under the null
hypothesis 𝐻0 and 𝐻1 respectively.

Furthermore, less variability in the reported responses of any RRT method
leads to higher reproducibility with the same degree of privacy.
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