10 research outputs found

    A sperm-activating peptide controls a cGMP-signaling pathway in starfish sperm☆

    Get PDF
    AbstractPeptides released from eggs of marine invertebrates play a central role in fertilization. About 80 different peptides from various phyla have been isolated, however, with one exception, their respective receptors on the sperm surface have not been unequivocally identified and the pertinent signaling pathways remain ill defined. Using rapid mixing techniques and novel membrane-permeable caged compounds of cyclic nucleotides, we show that the sperm-activating peptide asterosap evokes a fast and transient increase of the cGMP concentration in sperm of the starfish Asterias amurensis, followed by a transient cGMP-stimulated increase in the Ca2+ concentration. In contrast, cAMP levels did not change significantly and the Ca2+ response evoked by photolysis of caged cAMP was significantly smaller than that using caged cGMP. By cloning of cDNA and chemical crosslinking, we identified a receptor-type guanylyl cyclase in the sperm flagellum as the asterosap-binding protein. Sperm respond exquisitely sensitive to picomolar concentrations of asterosap, suggesting that the peptide serves a chemosensory function like resact, a peptide involved in chemotaxis of sperm of the sea urchin Arbacia punctulata. A unifying principle emerges that chemosensory transduction in sperm of marine invertebrates uses cGMP as the primary messenger, although there may be variations in the detail

    Challenges, solutions and research priorities for sustainable rangelands

    Get PDF
    Australia’s rangeland communities, industries, and environment are under increasing pressures from anthropogenic activities and global changes more broadly. We conducted a horizon scan to identify and prioritise key challenges facing Australian rangelands and their communities, and outline possible avenues to address these challenges, with a particular focus on research priorities. We surveyed participants of the Australian Rangeland Society 20th Biennial Conference, held in Canberra in September 2019, before the conference and in interactive workshops during the conference, in order to identify key challenges, potential solutions, and research priorities. The feedback was broadly grouped into six themes associated with supporting local communities, managing natural capital, climate variability and change, traditional knowledge, governance, and research and development. Each theme had several sub-themes and potential solutions to ensure positive, long-term outcomes for the rangelands. The survey responses made it clear that supporting ‘resilient and sustainable rangelands that provide cultural, societal, environmental and economic outcomes simultaneously’ is of great value to stakeholders. The synthesis of survey responses combined with expert knowledge highlighted that sustaining local communities in the long term will require that the inherent social, cultural and natural capital of rangelands are managed sustainably, particularly in light of current and projected variability in climate. Establishment of guidelines and approaches to address these challenges will benefit from: (i) an increased recognition of the value and contributions of traditional knowledge and practices; (ii) development of better governance that is guided by and benefits local stakeholders; and (iii) more funding to conduct and implement strong research and development activities, with research focused on addressing critical knowledge gaps as identified by the local stakeholders. This requires strong governance with legislation and policies that work for the rangelands. We provide a framework that indicates the key knowledge gaps and how innovations may be implemented and scaled out, up and deep to achieve the resilience of Australia’s rangelands. The same principles could be adapted to address challenges in rangelands on other continents, with similar beneficial outcomes

    bus, a Bushy Arabidopsis CYP79F1 Knockout Mutant with Abolished Synthesis of Short-Chain Aliphatic Glucosinolates

    No full text
    A new mutant of Arabidopsis designated bus1-1 (for bushy), which exhibited a bushy phenotype with crinkled leaves and retarded vascularization, was characterized. The phenotype was caused by an En-1 insertion in the gene CYP79F1. The deduced protein belongs to the cytochrome P450 superfamily. Because members of the CYP79 subfamily are believed to catalyze the oxidation of amino acids to aldoximes, the initial step in glucosinolate biosynthesis, we analyzed the level of glucosinolates in a CYP79F1 null mutant (bus1-1f) and in an overexpressing plant. Short-chain glucosinolates derived from methionine were completely lacking in the null mutant and showed increased levels in the overexpressing plant, indicating that CYP79F1 uses short-chain methionine derivatives as substrates. In addition, the concentrations of indole-3-ylmethyl-glucosinolate and the content of the auxin indole-3-acetic acid and its precursor indole-3-acetonitrile were increased in the bus1-1f mutant. Our results demonstrate for the first time that the formation of glucosinolates derived from methionine is mediated by CYP79F1 and that knocking out this cytochrome P450 has profound effects on plant growth and development

    bus

    No full text

    AtKC1, a silent Arabidopsis potassium channel α-subunit modulates root hair K(+) influx

    No full text
    Ion channels in roots allow the plant to gain access to nutrients. The composition of the individual ion channels and the functional contribution of different α-subunits is largely unknown. Focusing on K(+)-selective ion channels, we have characterized AtKC1, a new α-subunit from the Arabidopsis shaker-like ion channel family. Promoter-β-glucuronidase (GUS) studies identified AtKC1 expression predominantly in root hairs and root endodermis. Specific antibodies recognized AtKC1 at the plasma membrane. To analyze further the abundance and the functional contribution of the different K(+) channels α-subunits in root cells, we performed real-time reverse transcription–PCR and patch-clamp experiments on isolated root hair protoplasts. Studying all shaker-like ion channel α-subunits, we only found the K(+) inward rectifier AtKC1 and AKT1 and the K(+) outward rectifier GORK to be expressed in this cell type. Akt1 knockout plants essentially lacked inward rectifying K(+) currents. In contrast, inward rectifying K(+) currents were present in AtKC1 knockout plants, but fundamentally altered with respect to gating and cation sensitivity. This indicates that the AtKC1 α-subunit represents an integral component of functional root hair K(+) uptake channels

    Challenges, solutions and research priorities for sustainable rangelands

    No full text
    Australia’s rangeland communities, industries, and environment are under increasing pressures from anthropogenic activities and global changes more broadly. We conducted a horizon scan to identify and prioritise key challenges facing Australian rangelands and their communities, and outline possible avenues to address these challenges, with a particular focus on research priorities. We surveyed participants of the Australian Rangeland Society 20th Biennial Conference, held in Canberra in September 2019, before the conference and in interactive workshops during the conference, in order to identify key challenges, potential solutions, and research priorities. The feedback was broadly grouped into six themes associated with supporting local communities, managing natural capital, climate variability and change, traditional knowledge, governance, and research and development. Each theme had several sub-themes and potential solutions to ensure positive, long-term outcomes for the rangelands. The survey responses made it clear that supporting ‘resilient and sustainable rangelands that provide cultural, societal, environmental and economic outcomes simultaneously’ is of great value to stakeholders. The synthesis of survey responses combined with expert knowledge highlighted that sustaining local communities in the long term will require that the inherent social, cultural and natural capital of rangelands are managed sustainably, particularly in light of current and projected variability in climate. Establishment of guidelines and approaches to address these challenges will benefit from: (i) an increased recognition of the value and contributions of traditional knowledge and practices; (ii) development of better governance that is guided by and benefits local stakeholders; and (iii) more funding to conduct and implement strong research and development activities, with research focused on addressing critical knowledge gaps as identified by the local stakeholders. This requires strong governance with legislation and policies that work for the rangelands. We provide a framework that indicates the key knowledge gaps and how innovations may be implemented and scaled out, up and deep to achieve the resilience of Australia’s rangelands. The same principles could be adapted to address challenges in rangelands on other continents, with similar beneficial outcomes

    The polarity protein Scrib mediates epidermal development and exerts a tumor suppressive function during skin carcinogenesis

    Get PDF
    Background: The establishment and maintenance of polarity is vital for embryonic development and loss of polarity is a frequent characteristic of epithelial cancers, however the underlying molecular mechanisms remain unclear. Here, we identify a novel role for the polarity protein Scrib as a mediator of epidermal permeability barrier acquisition, skeletal morphogenesis, and as a potent tumor suppressor in cutaneous carcinogenesis. Methods: To explore the role of Scrib during epidermal development, we compared the permeability of toluidine blue dye in wild-type, Scrib heterozygous and Scrib KO embryonic epidermis at E16.5, E17.5 and E18.5. Mouse embryos were stained with alcian blue and alizarin red for skeletal analysis. To establish whether Scrib plays a tumor suppressive role during skin tumorigenesis and/or progression, we evaluated an autochthonous mouse model of skin carcinogenesis in the context of Scrib loss. We utilised Cre-LoxP technology to conditionally deplete Scrib in adult epidermis, since Scrib KO embryos are neonatal lethal. Results: We establish that Scrib perturbs keratinocyte maturation during embryonic development, causing impaired epidermal barrier formation, and that Scrib is required for skeletal morphogenesis in mice. Analysis of conditional transgenic mice deficient for Scrib specifically within the epidermis revealed no skin pathologies, indicating that Scrib is dispensable for normal adult epidermal homeostasis. Nevertheless, bi-allelic loss of Scrib significantly enhanced tumor multiplicity and progression in an autochthonous model of epidermal carcinogenesis in vivo, demonstrating Scrib is an epidermal tumor suppressor. Mechanistically, we show that apoptosis is the critical effector of Scrib tumor suppressor activity during skin carcinogenesis and provide new insight into the function of polarity proteins during DNA damage repair. Conclusions: For the first time, we provide genetic evidence of a unique link between skin carcinogenesis and loss of the epithelial polarity regulator Scrib, emphasizing that Scrib exerts a wide-spread tumor suppressive function in epithelia

    Make EU trade with Brazil sustainable

    Get PDF
    Brazil, home to one of the planet's last great forests, is currently in trade negotiations with its second largest trading partner, the European Union (EU). We urge the EU to seize this critical opportunity to ensure that Brazil protects human rights and the environment
    corecore