4,960 research outputs found

    Measurement of 139La(p,x) cross sections from 35–60 MeV by stacked-target activation

    Get PDF
    A stacked-target of natural lanthanum foils (99.9119% 139La) was irradiated using a 60 MeV proton beam at the LBNL 88-Inch Cyclotron. 139La(p,x) cross sections are reported between 35–60 MeV for nine product radionuclides. The primary motivation for this measurement was the need to quantify the production of 134Ce. As a positron-emitting analogue of the promising medical radionuclide 225Ac, 134Ce is desirable for in vivo applications of bio-distribution assays for this emerging radio-pharmaceutical. The results of this measurement were compared to the nuclear model codes TALYS, EMPIRE and ALICE (using default parameters), which showed significant deviation from the measured values

    Cognitive characteristics of older Japanese drivers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some causes of accidents among older drivers are: not paying attention to traffic signals; missing stop lines; and having to deal with and misjudging emergency situations. These causes of accidents reveal problems with attention and cognition. Such incidents are also related to driver perception and stress-coping mechanisms. It is important to examine the relation of stress reactions to attention and cognition as a factor influencing the causes of accidents commonly involving older drivers.</p> <p>Finding</p> <p>Subjects were 10 young drivers (23.3 ± 3.33 years) and 25 older drivers divided into two groups (older1 [60 to 65 years] and older2 [> 65 years]). This study revealed the correlation within driver stress inventory and driver coping questionnaires parameters was observed only in older drivers. They also needed a longer response time for Trail Making Test A and B. The factors affected the attention and cognition of older drivers by age but not driving experience itself, and coping parameters such as emotion focus, reappraisal, and avoidance were not included as stress inventory parameters. Being prone to fatigue was less for younger drivers than older drivers. Because they have shorter distances, shorter drive times, and no need for expressways, older drivers also had a significantly lower risk of thrill-seeking behaviour and more patience.</p> <p>Conclusion</p> <p>The intervention addressing their attention skills, aggressive feelings, and emotion focus should be considered. The technological improvements in cars will make older drivers feel safer and make driving easier which might lower the attention paid to the road, and regular driving training might be needed to assess and enhance their safety.</p

    Optimization of quantitative susceptibility mapping for regional estimation of oxygen extraction fraction in the brain

    Get PDF
    Purpose: We sought to determine the degree to which oxygen extraction fraction (OEF) estimated using quantitative susceptibility mapping (QSM) depends on two critical acquisition parameters that have a significant impact on acquisition time: voxel size and final echo time. Methods: Four healthy volunteers were imaged using a range of isotropic voxel sizes and final echo times. The 0.7 mm data were downsampled at different stages of QSM processing by a factor of 2 (to 1.4 mm), 3 (2.1 mm), or 4 (2.8 mm) to determine the impact of voxel size on each analysis step. OEF was estimated from 11 veins of varying diameter. Inter- and intra- session repeatability were estimated for the opti-mal protocol by repeat scanning in 10 participants. Results: Final echo time was found to have no significant effect on OEF. The effect of voxel size was significant, with larger voxel sizes underestimating OEF, depending on the proximity of the vein to the superficial surface of the brain and on vein diameter. The last analysis step of estimating vein OEF values from susceptibility images had the largest dependency on voxel size. Inter- session coefficients of variation on OEF estimates of between 5.2% and 8.7% are reported, depending on the vein. Conclusion: QSM acquisition times can be minimized by reducing the final echo time but an isotropic voxel size no larger than 1 mm is needed to accurately estimate OEF in most medium/large veins in the brain. Such acquisitions can be achieved in under 4 mi

    Efficient illumination independent appearance-based face tracking

    Get PDF
    One of the major challenges that visual tracking algorithms face nowadays is being able to cope with changes in the appearance of the target during tracking. Linear subspace models have been extensively studied and are possibly the most popular way of modelling target appearance. We introduce a linear subspace representation in which the appearance of a face is represented by the addition of two approxi- mately independent linear subspaces modelling facial expressions and illumination respectively. This model is more compact than previous bilinear or multilinear ap- proaches. The independence assumption notably simplifies system training. We only require two image sequences. One facial expression is subject to all possible illumina- tions in one sequence and the face adopts all facial expressions under one particular illumination in the other. This simple model enables us to train the system with no manual intervention. We also revisit the problem of efficiently fitting a linear subspace-based model to a target image and introduce an additive procedure for solving this problem. We prove that Matthews and Baker’s Inverse Compositional Approach makes a smoothness assumption on the subspace basis that is equiva- lent to Hager and Belhumeur’s, which worsens convergence. Our approach differs from Hager and Belhumeur’s additive and Matthews and Baker’s compositional ap- proaches in that we make no smoothness assumptions on the subspace basis. In the experiments conducted we show that the model introduced accurately represents the appearance variations caused by illumination changes and facial expressions. We also verify experimentally that our fitting procedure is more accurate and has better convergence rate than the other related approaches, albeit at the expense of a slight increase in computational cost. Our approach can be used for tracking a human face at standard video frame rates on an average personal computer

    WR 110: A Single Wolf-Rayet Star With Corotating Interaction Regions In Its Wind?

    Get PDF
    A 30-day contiguous photometric run with the MOST satellite on the WN5-6b star WR 110 (HD 165688) reveals a fundamental periodicity of P = 4.08 +/- 0.55 days along with a number of harmonics at periods P/n, with n ~ 2,3,4,5 and 6, and a few other possible stray periodicities and/or stochastic variability on timescales longer than about a day. Spectroscopic RV studies fail to reveal any plausible companion with a period in this range. Therefore, we conjecture that the observed light-curve cusps of amplitude ~ 0.01 mag that recur at a 4.08 day timescale may arise in the inner parts, or at the base of, a corotating interaction region (CIR) seen in emission as it rotates around with the star at constant angular velocity. The hard X-ray component seen in WR 110 could then be a result of a high velocity component of the CIR shock interacting with the ambient wind at several stellar radii. Given that most hot, luminous stars showing CIRs have two CIR arms, it is possible that either the fundamental period is 8.2 days or, more likely in the case of WR 110, there is indeed a second weaker CIR arm for P = 4.08 days, that occurs ~ two thirds of a rotation period after the main CIR. If this interpretation is correct, WR 110 therefore joins the ranks with three other single WR stars, all WN, with confirmed CIR rotation periods (WR 1, WR 6, and WR 134), albeit with WR 110 having by far the lowest amplitude photometric modulation. This illustrates the power of being able to secure intense, continuous high-precision photometry from space-based platforms such as MOST. It also opens the door to revealing low-amplitude photometric variations in other WN stars, where previous attempts have failed. If all WN stars have CIRs at some level, this could be important for revealing sources of magnetism or pulsation in addition to rotation periods.Comment: 25 pages, 8 figures, 2 tables, accepted in Ap

    Photometric variability of the T Tauri star TW Hya on time scales of hours to years

    Full text link
    MOST (Microvariability & Oscillations of STars) and ASAS (All Sky Automated Survey) observations have been used to characterize photometric variability of TW Hya on time scales from a fraction of a day to 7.5 weeks and from a few days to 8 years, respectively. The two data sets have very different uncertainties and temporal coverage properties and cannot be directly combined, nevertheless, they suggests a global variability spectrum with "flicker noise" properties, i.e. with amplitudes a ~ 1/sqrt(f), over >4 decades in frequency, in the range f = 0.0003 to 10 cycles per day (c/d). A 3.7 d period is clearly present in the continuous 11 day, 0.07 d time resolution, observations by MOST in 2007. Brightness extrema coincide with zero-velocity crossings in periodic (3.56 d) radial velocity variability detected in contemporaneous spectroscopic observations of Setiawan et al. (2008) and interpreted as caused by a planet. The 3.56/3.7 d periodicity was entirely absent in the second, four times longer MOST run in 2008, casting doubt on the planetary explanation. Instead, a spectrum of unstable single periods within the range of 2 - 9 days was observed; the tendency of the periods to progressively shorten was well traced using the wavelet analysis. The evolving periodicities and the overall flicker-noise characteristics of the TW Hya variability suggest a combination of several mechanisms, with the dominant ones probably related to the accretion processes from the disk around the star.Comment: MNRAS submitte

    An efficient and extensible approach for compressing phylogenetic trees

    Get PDF
    Biologists require new algorithms to efficiently compress and store their large collections of phylogenetic trees. TreeZip is a novel method for compressing phylogenetic trees. Recently, we extended our TreeZip algorithm to support branch lengths and show how it can be used to extract sets of trees of interest quickly. The key advantage of TreeZip over standard compression methods like 7zip is its ability to interpret and compress tree collections semantically, making it immune to branch rotations and allowing key operations (such calculating a consensus tree) to be performed quickly and without a loss of space savings. On unweighted phylogenetic trees, TreeZip is able to compress Newick files in excess of 98%. On weighted phylogenetic trees, TreeZip is able to compress a Newick file by at least 73%. TreeZip can be combined with 7zip with little overhead, allowing space savings in excess of 99 % (unweighted) and 92%(weighted). Unlike TreeZip, 7zip is not immune to branch rotations, and performs worse as the level of variability in the Newick string representation increases. Finally, since the TreeZip compressed text (TRZ) file contains all the semantic information in a collection of trees, we can easily filter and decompress a subset of trees of interest (such as the set of unique trees), or build the resulting consensus tree in a matter of seconds. We also show the ease of which set operations can be performed on TRZ files, at speeds quicker than those performed on Newick or 7zip compressed Newick files, and without loss of space savings. TreeZip is an efficient approach for compressing large collections of phylogenetic trees. The semantic and compact nature of the TRZ file allow it to be operated upon directly and quickly, without a need to decompress the original Newick file. We believe that TreeZip will be vital for compressing and archiving trees in the biological community.

    Do Changes in the Pace of Events Affect One-Off Judgments of Duration?

    Get PDF
    Five experiments examined whether changes in the pace of external events influence people’s judgments of duration. In Experiments 1a–1c, participants heard pieces of music whose tempo accelerated, decelerated, or remained constant. In Experiment 2, participants completed a visuo-motor task in which the rate of stimulus presentation accelerated, decelerated, or remained constant. In Experiment 3, participants completed a reading task in which facts appeared on-screen at accelerating, decelerating, or constant rates. In all experiments, the physical duration of the to-be-judged interval was the same across conditions. We found no significant effects of temporal structure on duration judgments in any of the experiments, either when participants knew that a time estimate would be required (prospective judgments) or when they did not (retrospective judgments). These results provide a starting point for the investigation of how temporal structure affects one-off judgments of duration like those typically made in natural settings
    corecore