402 research outputs found

    Bandgap properties of two-dimensional low-index photonic crystals

    Full text link
    We study the bandgap properties of two-dimensional photonic crystals created by a lattice of rods or holes conformed in a symmetric or asymmetric triangular structure. Using the plane-wave analysis, we calculate a minimum value of the refractive index contrast for opening both partial and full two-dimensional spectral gaps for both TM and TE polarized waves. We also analyze the effect of ellipticity of rods and holes and their orientation on the threshold value and the relative size of the bandgap.Comment: 5 pages, 6 figures, App. Phys. B. styl

    Search for Global Dipole Enhancements in the HiRes-I Monocular Data above 10^{18.5} eV

    Full text link
    Several proposed source models for Ultra-High Energy Cosmic Rays (UHECRs) consist of dipole distributions oriented towards major astrophysical landmarks such as the galactic center, M87, or Centaurus A. We use a comparison between real data and simulated data to show that the HiRes-I monocular data for energies above 10^{18.5} eV is, in fact, consistent with an isotropic source model. We then explore methods to quantify our sensitivity to dipole source models oriented towards the Galactic Center, M87, and Centaurus A.Comment: 17 pages, 31 figure

    Observation of the Ankle and Evidence for a High-Energy Break in the Cosmic Ray Spectrum

    Full text link
    We have measured the cosmic ray spectrum at energies above 101710^{17} eV using the two air fluorescence detectors of the High Resolution Fly's Eye experiment operating in monocular mode. We describe the detector, PMT and atmospheric calibrations, and the analysis techniques for the two detectors. We fit the spectrum to models describing galactic and extragalactic sources. Our measured spectrum gives an observation of a feature known as the ``ankle'' near 3×10183\times 10^{18} eV, and strong evidence for a suppression near 6×10196\times 10^{19} eV.Comment: 14 pages, 9 figures. To appear in Physics Letters B. Accepted versio

    Value of Urinary Albumin-to-Creatinine Ratio as a Predictor of Type 2 Diabetes in Pre-Diabetic Individuals

    Get PDF
    OBJECTIVE—The albumin-to-creatinine ratio (ACR) reflects urinary albumin excretion and is increasingly being accepted as an important clinical outcome predictor. Because of the great public health need for a simple and inexpensive test to identify individuals at high risk for developing type 2 diabetes, it has been suggested that the ACR might serve this purpose. We therefore determined whether the ACR could predict incident diabetes in a well-characterized cohort of pre-diabetic Americans

    Overriding water table control on managed peatland greenhouse gas emissions

    Get PDF
    Global peatlands store more carbon than is naturally present in the atmosphere1,2. However, many peatlands are under pressure from drainage-based agriculture, plantation development and fire, with the equivalent of around 3% of all anthropogenic greenhouse gases emitted from drained peatland3–5. Efforts to curb such emissions are intensifying through the conservation of undrained peatlands and rewetting of drained systems6. Here we report CO2 eddy covariance data from 16 locations and CH4 data from 41 locations in the British Isles, and combine them with published data from sites across all major peatland biomes. We find that the mean annual effective water-table depth (WTDe; that is, the average depth of the aerated peat layer) overrides all other ecosystem- and management-related controls on greenhouse gas fluxes. We estimate that every 10 cm of reduction in WTDe could reduce the net warming impact of CO2 and CH4 emissions (100-year Global Warming Potentials) by at least 3 t CO2e ha-1 yr-1, until WTDe is < 30 cm. Raising water levels further would continue to have a net cooling effect until WTDe is < 10 cm. Our results suggest that greenhouse gas emissions from peatlands drained for agriculture could be greatly reduced without necessarily halting their productive use. Halving WTDe in all drained agricultural peatlands, for example, could reduce emissions by the equivalent of over 1% of global anthropogenic emissions

    Young and Intermediate-age Distance Indicators

    Full text link
    Distance measurements beyond geometrical and semi-geometrical methods, rely mainly on standard candles. As the name suggests, these objects have known luminosities by virtue of their intrinsic proprieties and play a major role in our understanding of modern cosmology. The main caveats associated with standard candles are their absolute calibration, contamination of the sample from other sources and systematic uncertainties. The absolute calibration mainly depends on their chemical composition and age. To understand the impact of these effects on the distance scale, it is essential to develop methods based on different sample of standard candles. Here we review the fundamental properties of young and intermediate-age distance indicators such as Cepheids, Mira variables and Red Clump stars and the recent developments in their application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in Space Science Reviews (Chapter 3 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    Observation of hard scattering in photoproduction events with a large rapidity gap at HERA

    Get PDF
    Events with a large rapidity gap and total transverse energy greater than 5 GeV have been observed in quasi-real photoproduction at HERA with the ZEUS detector. The distribution of these events as a function of the γp\gamma p centre of mass energy is consistent with diffractive scattering. For total transverse energies above 12 GeV, the hadronic final states show predominantly a two-jet structure with each jet having a transverse energy greater than 4 GeV. For the two-jet events, little energy flow is found outside the jets. This observation is consistent with the hard scattering of a quasi-real photon with a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil

    Uncertainty and Surprise Jointly Predict Musical Pleasure and Amygdala, Hippocampus, and Auditory Cortex Activity

    Get PDF
    Listening to music often evokes intense emotions [1, 2]. Recent research suggests that musical pleasure comes from positive reward prediction errors, which arise when what is heard proves to be better than expected [3]. Central to this view is the engagement of the nucleus accumbens—a brain region that processes reward expectations—to pleasurable music and surprising musical events [4, 5, 6, 7, 8]. However, expectancy violations along multiple musical dimensions (e.g., harmony and melody) have failed to implicate the nucleus accumbens [9, 10, 11], and it is unknown how music reward value is assigned [12]. Whether changes in musical expectancy elicit pleasure has thus remained elusive [11]. Here, we demonstrate that pleasure varies nonlinearly as a function of the listener’s uncertainty when anticipating a musical event, and the surprise it evokes when it deviates from expectations. Taking Western tonal harmony as a model of musical syntax, we used a machine-learning model [13] to mathematically quantify the uncertainty and surprise of 80,000 chords in US Billboard pop songs. Behaviorally, we found that chords elicited high pleasure ratings when they deviated substantially from what the listener had expected (low uncertainty, high surprise) or, conversely, when they conformed to expectations in an uninformative context (high uncertainty, low surprise). Neurally, we found using fMRI that activity in the amygdala, hippocampus, and auditory cortex reflected this interaction, while the nucleus accumbens only reflected uncertainty. These findings challenge current neurocognitive models of music-evoked pleasure and highlight the synergistic interplay between prospective and retrospective states of expectation in the musical experience

    Enhanced glycemic control with combination therapy for type 2 diabetes in primary care

    Get PDF
    Type 2 diabetes mellitus is an increasingly common medical problem for primary care clinicians to address. Treatment of diabetes has evolved from simple replacement of insulin (directly or through insulin secretagogs) through capture of mechanisms such as insulin sensitizers, alpha-glucosidase inhibitors, and incretins. Only very recently has recognition of the critical role of the gastrointestinal system as a major culprit in glucose dysregulation been established. Since glycated hemoglobin A1c reductions provide meaningful risk reduction as well as improved quality of life, it is worthwhile to explore evolving paths for more efficient use of the currently available pharmacotherapies. Because diabetes is a progressive disease, even transiently successful treatment will likely require augmentation as the disorder progresses. Pharmacotherapies with complementary mechanisms of action will be necessary to achieve glycemic goals. Hence, clinicians need to be well informed about the various noninsulin alternatives that have been shown to be successful in glycemic goal attainment. This article reviews the benefits of glucose control, the current status of diabetes control, pertinent pathophysiology, available pharmacological classes for combination, limitations of current therapies, and suggestions for appropriate combination therapies, including specific suggestions for thresholds at which different strategies might be most effectively utilized by primary care clinicians
    corecore