15 research outputs found

    Sunbed use in children aged 11-17 in England: face to face quota sampling surveys in the National Prevalence Study and Six Cities Study

    Get PDF
    Objectives To quantify the use of sunbeds in young people across England, identify geographical variation, and explore patterns of use, including supervision

    30-day mortality after systemic anticancer treatment for breast and lung cancer in England: a population-based, observational study

    Get PDF
    Background: 30-day mortality might be a useful indicator of avoidable harm to patients from systemic anticancer treatments, but data for this indicator are limited. The Systemic Anti-Cancer Therapy (SACT) dataset collated by Public Health England allows the assessment of factors affecting 30-day mortality in a national patient population. The aim of this first study based on the SACT dataset was to establish national 30-day mortality benchmarks for breast and lung cancer patients receiving SACT in England, and to start to identify where patient care could be improved. Methods: In this population-based study, we included all women with breast cancer and all men and women with lung cancer residing in England, who were 24 years or older and who started a cycle of SACT in 2014 irrespective of the number of previous treatment cycles or programmes, and irrespective of their position within the disease trajectory. We calculated 30-day mortality after the most recent cycle of SACT for those patients. We did logistic regression analyses, adjusting for relevant factors, to examine whether patient, tumour, or treatment-related factors were associated with the risk of 30-day mortality. For each cancer type and intent, we calculated 30-day mortality rates and patient volume at the hospital trust level, and contrasted these in a funnel plot. Findings: Between Jan 1, and Dec, 31, 2014, we included 23 228 patients with breast cancer and 9634 patients with non-small cell lung cancer (NSCLC) in our regression and trust-level analyses. 30-day mortality increased with age for both patients with breast cancer and patients with NSCLC treated with curative intent, and decreased with age for patients receiving palliative SACT (breast curative: odds ratio [OR] 1·085, 99% CI 1·040–1·132; p<0·0001; NSCLC curative: 1·045, 1·013–1·079; p=0·00033; breast palliative: 0·987, 0·977–0·996; p=0·00034; NSCLC palliative: 0·987, 0·976–0·998; p=0·0015). 30-day mortality was also significantly higher for patients receiving their first reported curative or palliative SACT versus those who received SACT previously (breast palliative: OR 2·326 99% CI 1·634–3·312; p<0·0001; NSCLC curative: 3·371, 1·554–7·316; p<0·0001; NSCLC palliative: 2·667, 2·109–3·373; p<0·0001), and for patients with worse general wellbeing (performance status 2–4) versus those who were generally well (breast curative: 6·057, 1·333–27·513; p=0·0021; breast palliative: 6·241, 4·180–9·319; p<0·0001; NSCLC palliative: 3·384, 2·276–5·032; p<0·0001). We identified trusts with mortality rates in excess of the 95% control limits; this included seven for curative breast cancer, four for palliative breast cancer, five for curative NSCLC, and seven for palliative NSCLC. Interpretation: Our findings show that several factors affect the risk of early mortality of breast and lung cancer patients in England and that some groups are at a substantially increased risk of 30-day mortality. The identification of hospitals with significantly higher 30-day mortality rates should promote review of clinical decision making in these hospitals. Furthermore, our results highlight the importance of collecting routine data beyond clinical trials to better understand the factors placing patients at higher risk of 30-day mortality, and ultimately improve clinical decision making. Our insights into the factors affecting risk of 30-day mortality will help treating clinicians and their patients predict the balance of harms and benefits associated with SACT. Funding: Public Health England

    Tuberous Sclerosis Complex-1 Deficiency Attenuates Diet-Induced Hepatic Lipid Accumulation

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is causally linked to type 2 diabetes, insulin resistance and dyslipidemia. In a normal liver, insulin suppresses gluconeogenesis and promotes lipogenesis. In type 2 diabetes, the liver exhibits selective insulin resistance by failing to inhibit hepatic glucose production while maintaining triglyceride synthesis. Evidence suggests that the insulin pathway bifurcates downstream of Akt to regulate these two processes. Specifically, mTORC1 has been implicated in lipogenesis, but its role on hepatic steatosis has not been examined. Here, we generated mice with hepatocyte-specific deletion of Tsc1 to study the effects of constitutive mTORC1 activation in the liver. These mice developed normally but displayed mild hepatomegaly and insulin resistance without obesity. Unexpectedly, the Tsc1-null livers showed minimal signs of steatosis even under high-fat diet condition. This ‘resistant’ phenotype was reversed by rapamycin and could be overcome by the expression of Myr-Akt. Moreover, rapamycin failed to reduce hepatic triglyceride levels in models of steatosis secondary to Pten ablation in hepatocytes or high-fat diet in wild-type mice. These observations suggest that mTORC1 is neither necessary nor sufficient for steatosis. Instead, Akt and mTORC1 have opposing effects on hepatic lipid accumulation such that mTORC1 protects against diet-induced steatosis. Specifically, mTORC1 activity induces a metabolic shift towards fat utilization and glucose production in the liver. These findings provide novel insights into the role of mTORC1 in hepatic lipid metabolism

    Tracking Rapid Permafrost thaw Through Time: Exploring the Potential of Convolutional Neural Network based Models

    Get PDF
    This paper presents the novel use of convolutional neural network (CNN)-based machine learning models for remotely detecting and monitoring retrogressive thaw slumps (RTS) in high latitude northern permafrost using open-source Sentinel-2 satellite data. RTS are indicative of rapid permafrost thaw (RPT), the accelerated release of greenhouse gases (GHG) and potentially runaway changes in the cryosphere. Attempts to quantify GHG emissions from RTS are inhibited by a lack of information on RTS incidence and area affected. We show that site-specific CNN models can be used to produce time series data on rapid RTS development that allow for the approximation of associated GHG emissions. For the sites assessed we achieve good model precision, recall and F1 values of > 0.8. The short time series studied so far do not reveal clear trends in RTS development. These limitations arise from the low resolution of Sentinel-2 data (10 m) and limited availability and diversity of validated training data. The capability shown here is the first step towards achieving automated monitoring of rapid environmental change in permafrost using satellite data. This work highlights the need for ready access to open-source high resolution satellite data and permafrost field data if the potential of such approaches is to be fully realized

    Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes

    No full text
    Histone H3 lysine 4 (H3K4me) methyltransferases and their cofactors are essential for embryonic development and the establishment of gene expression patterns in a cell-specific and heritable manner. However, the importance of such epigenetic marks in maintaining gene expression in adults and in initiating human disease is unclear. Here, we addressed this question using a mouse model in which we could inducibly ablate PAX interacting (with transcription-activation domain) protein 1 (PTIP), a key component of the H3K4me complex, in cardiac cells. Reducing H3K4me3 marks in differentiated cardiomyocytes was sufficient to alter gene expression profiles. One gene regulated by H3K4me3 was Kv channel-interacting protein 2 (Kcnip2), which regulates a cardiac repolarization current that is downregulated in heart failure and functions in arrhythmogenesis. This regulation led to a decreased sodium current and action potential upstroke velocity and significantly prolonged action potential duration (APD). The prolonged APD augmented intracellular calcium and in vivo systolic heart function. Treatment with isoproterenol and caffeine in this mouse model resulted in the generation of premature ventricular beats, a harbinger of lethal ventricular arrhythmias. These results suggest that the maintenance of H3K4me3 marks is necessary for the stability of a transcriptional program in differentiated cells and point to an essential function for H3K4me3 epigenetic marks in cellular homeostasis

    Computational Simulations of Interactions of Scorpion Toxins with the Voltage-Gated Potassium Ion Channel

    Get PDF
    Based on a homology model of the Kv1.3 potassium channel, the recognitions of the six scorpion toxins, viz. agitoxin2, charybdotoxin, kaliotoxin, margatoxin, noxiustoxin, and Pandinus toxin, to the human Kv1.3 potassium channel have been investigated by using an approach of the Brownian dynamics (BD) simulation integrating molecular dynamics (MD) simulation. Reasonable three-dimensional structures of the toxin-channel complexes have been obtained employing BD simulations and triplet contact analyses. All of the available structures of the six scorpion toxins in the Research Collaboratory for Structural Bioinformatics Protein Data Bank determined by NMR were considered during the simulation, which indicated that the conformations of the toxin significantly affect both the molecular recognition and binding energy between the two proteins. BD simulations predicted that all the six scorpion toxins in this study use their β-sheets to bind to the extracellular entryway of the Kv1.3 channel, which is in line with the primary clues from the electrostatic interaction calculations and mutagenesis results. Additionally, the electrostatic interaction energies between the toxins and Kv1.3 channel correlate well with the binding affinities (−logK(d)s), R(2) = 0.603, suggesting that the electrostatic interaction is a dominant component for toxin-channel binding specificity. Most importantly, recognition residues and interaction contacts for the binding were identified. Lys-27 or Lys-28, residues Arg-24 or Arg-25 in the separate six toxins, and residues Tyr-400, Asp-402, His-404, Asp-386, and Gly-380 in each subunit of the Kv1.3 potassium channel, are the key residues for the toxin-channel recognitions. This is in agreement with the mutation results. MD simulations lasting 5 ns for the individual proteins and the toxin-channel complexes in a solvated lipid bilayer environment confirmed that the toxins are flexible and the channel is not flexible in the binding. The consistency between the results of the simulations and the experimental data indicated that our three-dimensional models of the toxin-channel complex are reasonable and can be used as a guide for future biological studies, such as the rational design of the blocking agents of the Kv1.3 channel and mutagenesis in both toxins and the Kv1.3 channel. Moreover, the simulation result demonstrates that the electrostatic interaction energies combined with the distribution frequencies from BD simulations might be used as criteria in ranking the binding configuration of a scorpion toxin to the Kv1.3 channel

    Design and Nuclear Magnetic Resonance (NMR) Structure Determination of the Second Extracellular Immunoglobulin Tyrosine Kinase A (TrkAIg2) Domain Construct for Binding Site Elucidation in Drug Discovery

    Get PDF
    The tyrosine kinase A (TrkA) receptor is a validated therapeutic intervention point for a wide range of conditions. TrkA activation by nerve growth factor (NGF) binding the second extracellular immunoglobulin (TrkAIg2) domain triggers intracellular signaling cascades. In the periphery, this promotes the pain phenotype and, in the brain, cell survival or differentiation. Reproducible structural information and detailed validation of protein–ligand interactions aid drug discovery. However, the isolated TrkAIg2 domain crystallizes as a β-strand-swapped dimer in the absence of NGF, occluding the binding surface. Here we report the design and structural validation by nuclear magnetic resonance spectroscopy of the first stable, biologically active construct of the TrkAIg2 domain for binding site confirmation. Our structure closely mimics the wild-type fold of TrkAIg2 in complex with NGF (1WWW.pdb), and the <sup>1</sup>H–<sup>15</sup>N correlation spectra confirm that both NGF and a competing small molecule interact at the known binding interface in solution
    corecore