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TRACKING RAPID PERMAFROST THAW THROUGH TIME: EXPLORING THE
POTENTIAL OF CONVOLUTIONAL NEURAL NETWORK BASED MODELS

Felix Rustemeyer1,3, Julia Barrott1, Matthew Fielding1, Adam Wickenden, Gustaf Hugelius2, Alexia Briassouli3

Stockholm Environment Institute1, Stockholm University2, Maastricht University3

1. ABSTRACT

This paper presents the novel use of convolutional neural net-
work (CNN)-based machine learning models for remotely de-
tecting and monitoring retrogressive thaw slumps (RTS) in
high latitude northern permafrost using open-source Sentinel-
2 satellite data. RTS are indicative of rapid permafrost thaw
(RPT), the accelerated release of greenhouse gases (GHG)
and potentially runaway changes in the cryosphere. Attempts
to quantify GHG emissions from RTS are inhibited by a lack
of information on RTS incidence and area affected. We show
that site-specific CNN models can be used to produce time se-
ries data on rapid RTS development that allow for the approx-
imation of associated GHG emissions. For the sites assessed
we achieve good model precision, recall and F1 values of >
0.8. The short time series studied so far do not reveal clear
trends in RTS development. These limitations arise from the
low resolution of Sentinel-2 data (10 m) and limited avail-
ability and diversity of validated training data. The capabil-
ity shown here is the first step towards achieving automated
monitoring of rapid environmental change in permafrost us-
ing satellite data. This work highlights the need for ready
access to open-source high resolution satellite data and per-
mafrost field data if the potential of such approaches is to be
fully realized.

2. INTRODUCTION

Soils and deep sediments in northern high latitude permafrost,
an area of 13.9 million km2, hold approximately 1460 – 1,600
billion tonnes of carbon – roughly twice as much carbon as in
the atmosphere and approximately 42 per cent of all soil car-
bon globally [1]. Climate change is driving rapid warming in
these regions, which in turn is driving permafrost thaw and
loss [2]. As permafrost thaws, microbial decomposition of
stored organic carbon increases, resulting in the release of in-
fluential and long-lived greenhouse gases (GHG) (Strauss et
al., 2021). This is a positive climate feedback loop: as tem-
peratures rise and more permafrost thaws, more GHG are re-
leased, driving further climate change (IPCC, 2021). Know-
ing how much and when these GHGs are likely to be released
is critical to determining the extent of climate change mitiga-
tion required under the UNFCCC.

Estimates and projections of GHG contributions from per-
mafrost thaw are not well constrained (IPCC, 2021). This
is especially the case for RPT, which could release 60–100
billion tonnes of carbon by 2030, adding to the 200 billion
tonnes expected to be released via more gradual thaw [3].
Currently, GHG emission and climate models used for cli-
mate policy and planning only account for gradual permafrost
thaw over decades and starting from the surface downwards
(Turetsky et al., 2020). To better understand RPT at scale and
incorporate associated GHG emissions into these models, we
need to be able to track and quantify RPT through time [4].

RPT results in visibly distinct landforms that can be iden-
tified using machine learning [4, 5]. These include RTS,
which develop in areas of loosely consolidated ice-rich sed-
iments such as glacial moraines and have been increasing in
frequency over recent decades in response to environmen-
tal changes [6]. Understanding the incidence and evolution
of RTS is critical as they shift significant volumes of sedi-
ments over short time frames, exposing substantial quantities
of previously buried carbon and disturbing the surrounding
permafrost [4].

This project uses computer vision to remotely identify and
monitor RTS to understand the drivers behind their develop-
ment and quantify their GHG emissions. We combine con-
volutional neural network (CNN)-based models with open-
source Sentinel-2 satellite data to detect and characterize RTS
development in six sites over the past six years. This paper
focuses on the results from two of these sites. We show that
there is significant potential from this approach for building
time series data (including RTS incidence and area) that can
be used to quantify GHG emissions over time. However, we
find that accurate year-to-year monitoring of RTS develop-
ment requires a high level of performance of machine learning
models that cannot be achieved with the comparably low reso-
lution of open-source imagery and readily available observed
data on RTS. This work underscores the potential benefits of
centralized curation of available permafrost field data and in-
creasing the accessibility of high resolution satellite data.

3. METHODOLOGY

In this section, we present the entire workflow for our ap-
proach, from data collection to model selection and train-
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Site Coordinates # Images
Herschel Island 139.00°W , 69.60°N 4
Horton 01 126.75°W , 69.75°N 3
Horton 02 126.60°W , 69.64°N 4
Kolguev 01 48.35°E , 69.22°N 5
Kolguev 02 48.51°E , 69.35°N 7
Lena 124.40°E , 69.12°N 18

Table 1. Sites with centre point coordinates and number of
multi-dimensional images used in this study.

Fig. 1. The data sources of the multi-dimensional images.

ing. Experiments to test the proposed approaches have been
conducted in a Python environment in Microsoft’s Planetary
Computer, consisting of a CPU with 4 cores and 32 GB of
memory. Planetary Computer is a platform providing tools
for research in environmental sustainability that is currently
in preview stage and free use for interested parties. The data
and repository of this study are stored in Microsoft Azure,
using Blob storage and DevOps. The neural networks are im-
plemented and trained using Keras.

3.1. Data collection

The raw ground truth data, provided by Ingmar Nitze (Al-
fred Wegener Institute, Bremerhaven, Germany) and used
in Nitze et al. (2021)[4], consists of 1203 polygons repre-
senting RTS across six arctic sites (see Table 1), each with
a size of 100 km2. These polygons are grouped together
based on site and collection date, and are all gathered in 2018
or 2019. Thereafter, the polygon-groups are processed into
multi-dimensional images using a bespoke data collection
pipeline that obtains spectral bands and elevation data for the
study sites. Planetary Computers integrated data access API
is employed for the gathering of four spectral bands (blue,
red, green and near infrared) with a resolution of 10 m. For
every polygon group, we select a Sentinel-2 acquisition with
a date as close as possible to the collection date of the poly-
gons and cloud cover below 10%. A slope layer is added to
the multi-dimensional images by applying a boxcar filter on
the Digital Elevation Model (DEM) obtained through Google
Earth Engine (GEE). The final layer of the images is the bi-
nary ground truth mask of the site indicating the locations of
the positives, the RTS pixels. The result of the data collection
pipeline is a collection of 41 six-dimensional images contain-
ing spectral, slope and ground truth information from the six
sites across different dates.

3.2. Data pre-processing

A series of pre-processing steps have taken place, in order to
obtain objective and representative results. Before use, the
images were appraised and those with missing spectral bands
and erroneous data structures removed. Thereafter, the im-
ages were split into 64 × 64-sized training arrays, and then
split into arrays containing only negatives, and arrays con-
taining at least one positive pixel. Only 7.9% of the arrays
contained positive pixels. As the aim of the model is to seg-
ment positive pixels, training the model using this imbalanced
dataset resulted in poor performance. This data imbalance
was resolved by undersampling to obtain 1416 arrays with a
1:1 ratio of arrays containing only negatives and arrays con-
taining at least one positive pixel. To increase the number of
training instances, and consequently the model’s performance
and generalizability, data augmentation was applied to the
training data. After experiments with several data augmenta-
tion techniques — including rotation, Gaussian blur and flip-
ping — it was found that Gaussian blur led to the highest
performance. Finally, the arrays are normalized by scaling all
the values between zero and one.

3.3. Network architecture

This study uses a U-Net, as it is the State-of-the-Art in
biomedical semantic segmentation, and can also be employed
for other segmentation tasks, like predicting of RTS [4].
The U-Net consists of a contracting path and an expanding
path, each containing a five times repetition of two convolu-
tions followed by a Scaled Exponential Linear Unit (SELU).
After this convolution block, the contracting path applies
downsampling using 2 × 2 max pooling, and the expansive
path employs 2 × 2 upsampling and an additional 2 × 2
up-convolution layer. Unlike the classic U-Net, proposed by
Ronneberger et al. [7], the repeating two convolutional layers
have an alternating kernel size. For this study, increasing ker-
nel sizes in the contracting path and decreasing kernel sizes in
the expansive path, ranging between three and six, led to the
best performance. To improve stability, generalizability and
training time of the model, dropout and batch normalization
layers were later added after multiple experiments.

3.4. Model training

Hyperparameter tuning has been conducted to find an optimal
configuration of hyperparameters. The binary cross entropy
dice loss, a sum of binary cross entropy and dice loss, has
been selected as loss function. The Adam algorithm with a
learning rate of 0.0001 is the best performing optimizer. A
sigmoid layer was used as the output activation layer, and the
model was trained for 100 epochs with a batch size of 32.

To address the circa 30:1 data imbalance between negative
and positive pixels, the loss function takes class weights into
account. This is implemented by adding sample weighting to
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Precision Recall F1
0.86 0.80 0.83

Table 2. Performance of the primary model on the test set.

the ImageGenerator class in Keras. For every batch, the ratio
of positive and negative pixels is calculated and considered
in the calculation of the loss. This places more focus on the
underrepresented positive pixels.

Seven different models were trained, each with a different
training, validation and test set. We first trained a model, sub-
sequently called the ’primary model’, on images from every
site and evaluated it using one selected image per site. There-
after, we conducted regional cross validation by training six
models on all images except the images from a specific site.
The images of this site were excluded from the training phase
and only used for evaluating the model. Regional cross vali-
dation enables the testing of the generalizability of the model
and the performance on unseen regions.

3.5. Application

Using the data collection pipeline and one of the trained mod-
els, thaw slumps can be predicted from 2016 (the launch of
Sentinel-2) onwards, for any chosen area in the arctic without
needing data source licenses. Here, we demonstrate the po-
tential and functionality of the developed tool by applying it
to characterise RTS development in the six sites, over the last
six years. We find that the inconsistent presence of snow, ice
and clouds in images heavily influences model performance.
We therefore use summertime images to minimize the amount
of snow, ice and cloud cover, so that year-to-year images are
similar. Using these images, the primary model is used to
predict the amount, extent and changes of RTS in these sites.

4. RESULTS

4.1. Evaluation

The significantly high precision, recall and F1 scores of the
primary model, displayed in Table 2, indicate the good per-
formance of the model in predicting RTS in these sites. This
is supported when comparing the RTS ground truth and pre-
dictions, as shown for Horton 01 in Figure 2. For all the six
sites, the model is capable of identifying the largest RTS clus-
ters with a high level of accuracy. However, some predicted
RTS clusters contain gaps of false negatives, contributing to a
decreased recall value. Additionally, the model’s precision is
decreased by small false positive RTS clusters.

The regional cross validation models, evaluated solely on
images of a site not seen during training, have significantly
lower performance, as shown in Table 3, suggesting that the
trained models are not able of accurately detecting RTS when
being employed on region not seen during training. This is

(a) Ground truth (b) Predictions

Fig. 2. Horton 01 satellite images with RTS ground truths and
predictions.

Herschel Island Horton 01 Horton 02 Kolguev 01 Kolguev 02 Lena
0.10 0.02 0.07 0.03 0.01 0.04

Table 3. F1 values of the regional cross validation models.

not unexpected, as a relatively low amount of training data is
available, limiting the generalisability of our approach.

4.2. Detecting RTS over time

Figure 3 shows the total area and amount of RTS predicted by
the model for the sites Horton 01 and Kolguev 02 for the last
six years. The model is able to identify the main RTS cluster
of the site for every year, and tracks small distinctions in area
and amount of RTS between years. Because of the imperfect
accuracy of the model, differences in image quality and only
small distinctions in detected RTS, we cannot draw a general
conclusion about the change of RTS in these areas. Using data
from Turetksy et al 2020 [3], and assuming that pixels not
classified as RTS are undisturbed tundra we calculate that, as
a result of RTS development, Horton 01 and Kolguev 02 are
seeing net CO2 losses to the atmosphere of 1810 and 850 tons
C/yr respectively. Following Turetsky et al. 2020 [3], these
fluxes include CO2 release from net ecosystem exchange as
well as particulate and dissolved organic carbon losses, were
two thirds of losses are assumed to be mineralized to CO2.
Hillslope thermokarst has negligable effects on CH4 fluxes so
only CO2 is included.

5. DISCUSSION AND CONCLUSIONS

This work presents a novel application of CNNs for identi-
fying and characterizing RTS in permafrost regions, adding
to a growing literature demonstrating the power of CNNs for
computer vision applications. Tackling data imbalance and
enlarging the training set using data augmentation play a key
role in maximizing model performance. In particular, the use
of sample weighting — to lay more focus on the underrepre-
sented pixels — has improved performance remarkably.
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Fig. 3. Predicted total area of RTS from 2016 - 2021. 15%
error bars are included to represent uncertainties in the model
output based on performance factors listed in Table 2. The
number of detected RTS is displayed in the bars.

Overall, this work demonstrates that machine learning
models using imbalanced, medium-resolution, open-source
data can be used to identify and monitor the incidence and
area of RTS in permafrost regions. The insights gained using
this approach — including the total area of RTS – can be used
to produce more accurate estimates of GHG emissions arising
from RTS development in these sites over time. Our calcula-
tions show even the small areas of RTS seen now are enough
to turn the study areas from sinks to sources of CO2. This
approach has significant potential applications for monitoring
GHG emissions from these natural processes, which are ac-
celerating under climate change, and for better understanding
the drivers behind their development.

Our evaluation factors greater than 0.8 for detecting RTS
in sites seen during training, are comparable to those achieved
by Nitze et al. (2021) and Huang et al. (2020) [4, 5]. Al-
though this indicates the model is performing well, we show
that the uncertainty in the model outputs have a big impact on
results and trends (Figure 3). Higher model performance is
required for models to be sensitive enough to accurately track
changes in RTS year to year for the sites studied. The perfor-
mance of our model may be limited by the resolution of the
open source Sentinel-2 spectral data. RTS in Canada extend
at a rate of between 7.2 and 26.7 m per year [8]. It is likely
that these small changes in RTS are difficult to detect because
Sentinel-2 has a 10 m resolution.

Our regional cross validation results demonstrate the gen-
eral difficulties of predicting RTS in unseen sites across the
arctic and replicates issues encountered by Nitze et al. (2021)
[4]. These challenges likely arise from the heterogeneity of
landscape and varying site properties, such as ground ice con-
tent and sediment composition. To address these challenges,
more and more diverse RTS ground truth data is needed to
train the models. Models developed by Nitze et al. (2021) [4]
using PlanetScope data and a similar deep learning approach
perform better for unknown sites; this may be due to much
higher resolution data (3 m) compared to this study (10 m).

Retrogressive thaw slumps are a canary in the coalmine,

indicating areas of rapid thaw and high GHG emissions. This
work sets the foundation for an immediate use of computer
vision for tracking RPT at scale, using free data and soft-
ware. Improved access to high resolution satellite data and
more extensive and diverse RTS ground truth data are needed
to realize full the potential of this and similar approaches.
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