669 research outputs found

    Random forest identifies predictors of discharge destination following total shoulder arthroplasty

    No full text
    Background: Machine learning algorithms are finding increasing use in prediction of surgical outcomes in orthopedics. Random forest is one of such algorithms popular for its relative ease of application and high predictability. In the process of sample classification, algorithms also generate a list of variables most crucial in the sorting process. Total shoulder arthroplasty (TSA) is a common orthopedic procedure after which most patients are discharged home. The authors hypothesized that random forest algorithm would be able to determine most important variables in prediction of nonhome discharge. Methods: Authors filtered the National Surgical Quality iImprovement Program database for patients undergoing elective TSA (Current Procedural Terminology 23472) between 2008 and 2018. Applied exclusion criteria included avascular necrosis, trauma, rheumatoid arthritis, and other inflammatory arthropathies to only include surgeries performed for primary osteoarthritis. Using Python and the scikit-learn package, various machine learning algorithms including random forest were trained based on the sample patients to predict patients who had nonhome discharge (to facility, nursing home, etc.). List of applied variables were then organized in order of feature importance. The algorithms were evaluated based on area under the curve of the receiver operating characteristic, accuracy, recall, and the F-1 score. Results: Application of inclusion and exclusion criteria yielded 18,883 patients undergoing elective TSA, of whom 1813 patients had nonhome discharge. Random forest outperformed other machine learning algorithms and logistic regression based on American Society of Anesthesiologists (ASA) classification. Random forest ranked age, sex, ASA classification, and functional status as the most important variables with feature importance of 0.340, 0.130, 0.126, and 0.120, respectively. Average age of patients going to facility was 76 years, while average age of patients going home was 68 years. 78.1% of patients going to facility were women, while 52.7% of patients going home were. Among patients with nonhome discharge, 80.3% had ASA scores of 3 or 4, while patients going home had 54% of patients with ASA scores 3 or 4. 10.5% of patients going to facility were considered of partially/totally dependent functional status, whereas 1.3% of patients going home were considered partially or totally dependent (P value < .05 for all). Conclusion: Of various algorithms, random forest best predicted discharge destination following TSA. When using random forest to predict nonhome discharge after TSA, age, gender, ASA scores, and functional status were the most important variables. Two patient groups (home discharge, nonhome discharge) were significantly different when it came to age, gender distribution, ASA scores, and functional status

    Multiplicity dependence of light (anti-)nuclei production in p–Pb collisions at sNN=5.02 TeV

    Get PDF
    The measurement of the deuteron and anti-deuteron production in the rapidity range −1 < y < 0 as a function of transverse momentum and event multiplicity in p–Pb collisions at √sNN = 5.02 TeV is presented. (Anti-)deuterons are identified via their specific energy loss dE/dx and via their time-of- flight. Their production in p–Pb collisions is compared to pp and Pb–Pb collisions and is discussed within the context of thermal and coalescence models. The ratio of integrated yields of deuterons to protons (d/p) shows a significant increase as a function of the charged-particle multiplicity of the event starting from values similar to those observed in pp collisions at low multiplicities and approaching those observed in Pb–Pb collisions at high multiplicities. The mean transverse particle momenta are extracted from the deuteron spectra and the values are similar to those obtained for p and particles. Thus, deuteron spectra do not follow mass ordering. This behaviour is in contrast to the trend observed for non-composite particles in p–Pb collisions. In addition, the production of the rare 3He and 3He nuclei has been studied. The spectrum corresponding to all non-single diffractive p-Pb collisions is obtained in the rapidity window −1 < y < 0 and the pT-integrated yield dN/dy is extracted. It is found that the yields of protons, deuterons, and 3He, normalised by the spin degeneracy factor, follow an exponential decrease with mass number

    Observation of medium-induced yield enhancement and acoplanarity broadening of low-pTp_\mathrm{T} jets from measurements in pp and central Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV

    No full text
    International audienceThe ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum (high pTp_{\rm T}) hadron trigger in proton-proton and central Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV. A data-driven statistical method is used to mitigate the large uncorrelated background in central Pb-Pb collisions. Recoil jet distributions are reported for jet resolution parameter R=0.2R=0.2, 0.4, and 0.5 in the range 7<pT,jet<1407 < p_{\rm T,jet} < 140 GeV/c/c and trigger-recoil jet azimuthal separation π/2<Δφ<π\pi/2 < \Delta\varphi < \pi. The measurements exhibit a marked medium-induced jet yield enhancement at low pTp_{\rm T} and at large azimuthal deviation from Δφπ\Delta\varphi\sim\pi. The enhancement is characterized by its dependence on Δφ\Delta\varphi, which has a slope that differs from zero by 4.7σ\sigma. Comparisons to model calculations incorporating different formulations of jet quenching are reported. These comparisons indicate that the observed yield enhancement arises from the response of the QGP medium to jet propagation

    Probing the Chiral Magnetic Wave with charge-dependent flow measurements in Pb-Pb collisions at the LHC

    No full text
    International audienceThe Chiral Magnetic Wave (CMW) phenomenon is essential to provide insights into the strong interaction in QCD, the properties of the quark-gluon plasma, and the topological characteristics of the early universe, offering a deeper understanding of fundamental physics in high-energy collisions. Measurements of the charge-dependent anisotropic flow coefficients are studied in Pb-Pb collisions at center-of-mass energy per nucleon-nucleon collision sNN=\sqrt{s_{\mathrm{NN}}}= 5.02 TeV to probe the CMW. In particular, the slope of the normalized difference in elliptic (v2v_{2}) and triangular (v3v_{3}) flow coefficients of positively and negatively charged particles as a function of their event-wise normalized number difference, is reported for inclusive and identified particles. The slope r3Normr_{3}^{\rm Norm} is found to be larger than zero and to have a magnitude similar to r2Normr_{2}^{\rm Norm}, thus pointing to a large background contribution for these measurements. Furthermore, r2Normr_{2}^{\rm Norm} can be described by a blast wave model calculation that incorporates local charge conservation. In addition, using the event shape engineering technique yields a fraction of CMW (fCMWf_{\rm CMW}) contribution to this measurement which is compatible with zero. This measurement provides the very first upper limit for fCMWf_{\rm CMW}, and in the 10-60% centrality interval it is found to be 26% (38%) at 95% (99.7%) confidence level

    Charged-particle production as a function of the relative transverse activity classifier in pp, p-Pb, and Pb-Pb collisions at the LHC

    No full text
    International audienceMeasurements of charged-particle production in pp, p-Pb, and Pb-Pb collisions in the toward, away, and transverse regions with the ALICE detector are discussed. These regions are defined event-by-event relative to the azimuthal direction of the charged trigger particle, which is the reconstructed particle with the largest transverse momentum (pTtrigp_{\mathrm{T}}^{\rm trig}) in the range 8<pTtrig<158<p_{\mathrm{T}}^{\rm trig}<15 GeV/c/c. The toward and away regions contain the primary and recoil jets, respectively; both regions are accompanied by the underlying event (UE). In contrast, the transverse region perpendicular to the direction of the trigger particle is dominated by the so-called UE dynamics, and includes also contributions from initial- and final-state radiation. The relative transverse activity classifier, RT=NchT/NchTR_{\mathrm{T}}=N_{\mathrm{ch}}^{\mathrm{T}}/\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle, is used to group events according to their UE activity, where NchTN_{\mathrm{ch}}^{\mathrm{T}} is the charged-particle multiplicity per event in the transverse region and NchT\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle is the mean value over the whole analysed sample. The energy dependence of the RTR_{\mathrm{T}} distributions in pp collisions at s=2.76\sqrt{s}=2.76, 5.02, 7, and 13 TeV is reported, exploring the Koba-Nielsen-Olesen (KNO) scaling properties of the multiplicity distributions. The first measurements of charged-particle pTp_{\rm T} spectra as a function of RTR_{\mathrm{T}} in the three azimuthal regions in pp, p-Pb, and Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV are also reported. Data are compared with predictions obtained from the event generators PYTHIA 8 and EPOS LHC. This set of measurements is expected to contribute to the understanding of the origin of collective-like effects in small collision systems (pp and p-Pb)

    Light-flavor particle production in high-multiplicity pp collisions at s\sqrt{s} = 13 TeV as a function of transverse spherocity

    No full text
    Results on the transverse spherocity dependence of light-flavor particle production (π\pi, K, p, ϕ\phi, K0{\rm K^{*0}}, KS0{\rm K}^{0}_{\rm{S}}, Λ\Lambda, Ξ\Xi) at midrapidity in high-multiplicity pp collisions at s\sqrt{s} = 13 TeV were obtained with the ALICE apparatus. The transverse spherocity estimator (SOpT=1S_{\text{O}}^{p_{\rm T}=1}) categorizes events by their azimuthal topology. Utilizing narrow selections on SOpT=1S_{\text{O}}^{p_{\rm T}=1}, it is possible to contrast particle production in collisions dominated by many soft initial interactions with that observed in collisions dominated by one or more hard scatterings. Results are reported for two multiplicity estimators covering different pseudorapidity regions. The SOpT=1S_{\text{O}}^{p_{\rm T}=1} estimator is found to effectively constrain the hardness of the events when the midrapidity (η<0.8\left | \eta \right |< 0.8) estimator is used. The production rates of strange particles are found to be slightly higher for soft isotropic topologies, and severely suppressed in hard jet-like topologies. These effects are more pronounced for hadrons with larger mass and strangeness content, and observed when the topological selection is done within a narrow multiplicity interval. This demonstrates that an important aspect of the universal scaling of strangeness enhancement with final-state multiplicity is that high-multiplicity collisions are dominated by soft, isotropic processes. On the contrary, strangeness production in events with jet-like processes is significantly reduced. The results presented in this article are compared with several QCD-inspired Monte Carlo event generators. Models that incorporate a two-component phenomenology, either through mechanisms accounting for string density, or thermal production, are able to describe the observed strangeness enhancement as a function of SOpT=1S_{\text{O}}^{p_{\rm T}=1}.Results on the transverse spherocity dependence of light-flavor particle production (π\pi, K, p, ϕ\phi, K0{\rm K^{*0}}, KS0{\rm K}^{0}_{\rm{S}}, Λ\Lambda, Ξ\Xi) at midrapidity in high-multiplicity pp collisions at s=13\sqrt{s} = 13 TeV were obtained with the ALICE apparatus. The transverse spherocity estimator (SOpT=1S_{{\rm O}}^{{\it p}_{\rm T}=1}) categorizes events by their azimuthal topology. Utilizing narrow selections on SOpT=1S_{\text{O}}^{{\it p}_{\rm T}=1}, it is possible to contrast particle production in collisions dominated by many soft initial interactions with that observed in collisions dominated by one or more hard scatterings. Results are reported for two multiplicity estimators covering different pseudorapidity regions. The SOpT=1S_{{\rm O}}^{{\it p}_{\rm T}=1} estimator is found to effectively constrain the hardness of the events when the midrapidity (η<0.8\left | \eta \right |< 0.8) estimator is used. The production rates of strange particles are found to be slightly higher for soft isotropic topologies, and severely suppressed in hard jet-like topologies. These effects are more pronounced for hadrons with larger mass and strangeness content, and observed when the topological selection is done within a narrow multiplicity interval. This demonstrates that an important aspect of the universal scaling of strangeness enhancement with final-state multiplicity is that high-multiplicity collisions are dominated by soft, isotropic processes. On the contrary, strangeness production in events with jet-like processes is significantly reduced. The results presented in this article are compared with several QCD-inspired Monte Carlo event generators. Models that incorporate a two-component phenomenology, either through mechanisms accounting for string density, or thermal production, are able to describe the observed strangeness enhancement as a function of SOpT=1S_{{\rm O}}^{{\it p}_{\rm T}=1}

    Measurement of the production cross section of prompt Ξ0c baryons in p–Pb collisions at √sNN = 5.02 TeV

    No full text
    The transverse momentum (pT) differential production cross section of the promptly-produced charm-strange baryon Ξ0c (and its charge conjugate Ξ0c¯¯¯¯¯¯) is measured at midrapidity via its hadronic decay into π+Ξ− in p−Pb collisions at a centre-of-mass energy per nucleon−nucleon collision sNN−−−√ = 5.02 TeV with the ALICE detector at the LHC. The Ξ0c nuclear modification factor (RpPb), calculated from the cross sections in pp and p−Pb collisions, is presented and compared with the RpPb of Λ+c baryons. The ratios between the pT-differential production cross section of Ξ0c baryons and those of D0 mesons and Λ+c baryons are also reported and compared with results at forward and backward rapidity from the LHCb Collaboration. The measurements of the production cross section of prompt Ξ0c baryons are compared with a model based on perturbative QCD calculations of charm-quark production cross sections, which includes only cold nuclear matter effects in p−Pb collisions, and underestimates the measurement by a factor of about 50. This discrepancy is reduced when the data is compared with a model in which hadronisation is implemented via quark coalescence. The pT-integrated cross section of prompt Ξ0c-baryon production at midrapidity extrapolated down to pT = 0 is also reported. These measurements offer insights and constraints for theoretical calculations of the hadronisation process. Additionally, they provide inputs for the calculation of the charm production cross section in p−Pb collisions at midrapidity

    Measurement of the low-energy antitriton inelastic cross section

    No full text
    In this Letter, the first measurement of the inelastic cross section for antitriton−nucleus interactions is reported, covering the momentum range of 0.8≤p<2.4 GeV/c. The measurement is carried out using data recorded with the ALICE detector in pp and Pb−Pb collisions at a centre-of-mass energy per nucleon of 13 TeV and 5.02 TeV, respectively. The detector material serves as an absorber for antitriton nuclei. The raw yield of (anti)triton nuclei measured with the ALICE apparatus is compared to the results from detailed ALICE simulations based on the GEANT4 toolkit for the propagation of (anti)particles through matter, allowing one to quantify the inelastic interaction probability in the detector material. This analysis complements the measurement of the inelastic cross section of antinuclei up to A=3 carried out by the ALICE Collaboration, and demonstrates the feasibility of the study of the isospin dependence of inelastic interaction cross section with the analysis techniques presented in this Letter

    Accessing the strong interaction between Λ baryons and charged kaons with the femtoscopy technique at the LHC

    No full text
    The interaction between Λ baryons and kaons/antikaons is a crucial ingredient for the strangeness S=0 and S=−2 sector of the meson--baryon interaction at low energies. In particular, the ΛK¯¯¯¯ might help in understanding the origin of states such as the Ξ(1620), whose nature and properties are still under debate. Experimental data on Λ−K and Λ−K¯¯¯¯ systems are scarce, leading to large uncertainties and tension between the available theoretical predictions constrained by such data. In this Letter we present the measurements of Λ−K+⊕Λ¯¯¯¯−K− and Λ−K−⊕Λ¯¯¯¯−K+ correlations obtained in the high-multiplicity triggered data sample in pp collisions at s√=13 TeV recorded by ALICE at the LHC. The correlation function for both pairs is modeled using the Lednicky−Lyuboshits analytical formula and the corresponding scattering parameters are extracted. The Λ−K−⊕Λ¯¯¯¯−K+ correlations show the presence of several structures at relative momenta k∗ above 200 MeV/c, compatible with the Ω baryon, the Ξ(1690), and Ξ(1820) resonances decaying into Λ−K− pairs. The low k∗ region in the Λ−K−⊕Λ¯¯¯¯−K+ also exhibits the presence of the Ξ(1620) state, expected to strongly couple to the measured pair. The presented data allow to access the ΛK+ and ΛK− strong interaction with an unprecedented precision and deliver the first experimental observation of the Ξ(1620) decaying into ΛK−

    Measurement of Ω0c baryon production and branching-fraction ratio BR(Ω0c → Ω−e+νe)/BR(Ω0c → Ω−π+) in pp collisions at √s = 13 TeV

    No full text
    The inclusive production of the charm-strange baryon Ω0c is measured for the first time via its semileptonic decay into Ω−e+νe at midrapidity (|y| < 0.8) in proton–proton (pp) collisions at the centre-of-mass energy √s = 13 TeV with the ALICE detector at the LHC. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 2 < pT < 12 GeV/c. The branching-fraction ratio BR(Ω0c → Ω−e+νe)/BR(Ω0c → Ω−π+) is measured to be 1.12 ± 0.22 (stat.) ± 0.27 (syst.). Comparisons with other experimental measurements, as well as with theoretical calculations, are presented
    corecore