267 research outputs found

    Reversible signal transmission in an active mechanical metamaterial

    Full text link
    Mechanical metamaterials are designed to enable unique functionalities, but are typically limited by an initial energy state and require an independent energy input to function repeatedly. Our study introduces a theoretical active mechanical metamaterial that incorporates a biological reaction mechanism to overcome this key limitation of passive metamaterials. Our material allows for reversible mechanical signal transmission, where energy is reintroduced by the biologically motivated reaction mechanism. By analysing a coarse grained continuous analogue of the discrete model, we find that signals can be propagated through the material by a travelling wave. Analysis of the continuum model provides the region of the parameter space that allows signal transmission, and reveals similarities with the well-known FitzHugh-Nagumo system. We also find explicit formulae that approximate the effect of the timescale of the reaction mechanism on the signal transmission speed, which is essential for controlling the material.Comment: 20 pages, 7 figure

    Theoretical limits on magnetic field strengths in low-mass stars

    Get PDF
    19 pages, 10 figures, accepted to ApJObservations have suggested that some low-mass stars have larger radii than predicted by 1-D structure models. Some theoretical models have invoked very strong interior magnetic fields (of order 1 MG or more) as a possible cause of such large radii. Whether fields of that strength could in principle by generated by dynamo action in these objects is unclear, and we do not address the matter directly. Instead, we examine whether such fields could remain in the interior of a low mass object for a significant time, and whether they would have any other obvious signatures. First, we estimate timescales for the loss of strong fields by magnetic buoyancy instabilities. We consider a range of field strengths and simple morphologies, including both idealized flux tubes and smooth layers of field. We confirm some of our analytical estimates using thin flux tube magnetohydrodynamic (MHD) simulations of the rise of buoyant fields in a fully-convective M-dwarf. Separately, we consider the Ohmic dissipation of such fields. We find that dissipation provides a complementary constraint to buoyancy: while small-scale, fibril fields might be regenerated faster than they rise, the dissipative heating associated with such fields would in some cases greatly exceed the luminosity of the star. We show how these constraints combine to yield limits on the internal field strength and morphology in low-mass stars. In particular, we find that for stars of 0.3 solar masses, no fields in flux tubes stronger than about 800 kG are simultaneously consistent with both constraints

    Simulations of core convection in rotating A-type stars: Differential rotation and overshooting

    Full text link
    We present the results of 3--D simulations of core convection within A-type stars of 2 solar masses, at a range of rotation rates. We consider the inner 30% by radius of such stars, thereby encompassing the convective core and some of the surrounding radiative envelope. We utilize our anelastic spherical harmonic (ASH) code, which solves the compressible Navier-Stokes equations in the anelastic approximation, to examine highly nonlinear flows that can span multiple scale heights. The cores of these stars are found to rotate differentially, with central cylindrical regions of strikingly slow rotation achieved in our simulations of stars whose convective Rossby number (R_{oc}) is less than unity. Such differential rotation results from the redistribution of angular momentum by the nonlinear convection that strongly senses the overall rotation of the star. Penetrative convective motions extend into the overlying radiative zone, yielding a prolate shape (aligned with the rotation axis) to the central region in which nearly adiabatic stratification is achieved. This is further surrounded by a region of overshooting motions, the extent of which is greater at the equator than at the poles, yielding an overall spherical shape to the domain experiencing at least some convective mixing. We assess the overshooting achieved as the stability of the radiative exterior is varied, and the weak circulations that result in that exterior. The convective plumes serve to excite gravity waves in the radiative envelope, ranging from localized ripples of many scales to some remarkable global resonances.Comment: 48 pages, 16 figures, some color. Accepted to Astrophys. J. Color figures compressed with appreciable loss of quality; a PDF of the paper with better figures is available at http://lcd-www.colorado.edu/~brownim/core_convectsep24.pd

    Strong Dynamo Action in Rapidly Rotating Suns

    Full text link
    Stellar dynamos are driven by complex couplings between rotation and turbulent convection, which drive global-scale flows and build and rebuild stellar magnetic fields. When stars like our sun are young, they rotate much more rapidly than the current solar rate. Observations generally indicate that more rapid rotation is correlated with stronger magnetic activity and perhaps more effective dynamo action. Here we examine the effects of more rapid rotation on dynamo action in a star like our sun. We find that vigorous dynamo action is realized, with magnetic field generated throughout the bulk of the convection zone. These simulations do not possess a penetrative tachocline of shear where global-scale fields are thought to be organized in our sun, but despite this we find strikingly ordered fields, much like sea-snakes of toroidal field, which are organized on global scales. We believe this to be a novel finding.Comment: 8 pages, 4 figs. Published in conference proceedings "Unsolved Problems in Stellar Physics", held July 2-6 2007 Cambridge, Englan

    Britain’s slow movement to a gender egalitarian equilibrium: parents and employment in the UK 2001–13

    Get PDF
    This article examines the working lives of British couple families across the first decade of the millennium using EU Labour Force Survey data (2001–13) taking a multiple equilibria approach. Some growth in dual full-time earners, increased working hours of mothers in part-time employment and a growing proportion of households with ‘non-standard’ working patterns are all identified, suggesting both a convergence and greater diversity in economic provisioning within parent couple households. Household employment patterns remain strongly associated with maternal education and family size but are becoming less sensitive to the age of the youngest child. The dual full-time earner model is growing in significance for British parents of young children but a new gender egalitarian equilibrium has not yet been reached

    A FUSE Survey of Interstellar Molecular Hydrogen in the Small and Large Magellanic Clouds

    Get PDF
    We describe a moderate-resolution FUSE survey of H2 along 70 sight lines to the Small and Large Magellanic Clouds, using hot stars as background sources. FUSE spectra of 67% of observed Magellanic Cloud sources (52% of LMC and 92% of SMC) exhibit absorption lines from the H2 Lyman and Werner bands between 912 and 1120 A. Our survey is sensitive to N(H2) >= 10^14 cm^-2; the highest column densities are log N(H2) = 19.9 in the LMC and 20.6 in the SMC. We find reduced H2 abundances in the Magellanic Clouds relative to the Milky Way, with average molecular fractions = 0.010 (+0.005, -0.002) for the SMC and = 0.012 (+0.006, -0.003) for the LMC, compared with = 0.095 for the Galactic disk over a similar range of reddening. The dominant uncertainty in this measurement results from the systematic differences between 21 cm radio emission and Lya in pencil-beam sight lines as measures of N(HI). These results imply that the diffuse H2 masses of the LMC and SMC are 8 x 10^6 Msun and 2 x 10^6 Msun, respectively, 2% and 0.5% of the H I masses derived from 21 cm emission measurements. The LMC and SMC abundance patterns can be reproduced in ensembles of model clouds with a reduced H2 formation rate coefficient, R ~ 3 x 10^-18 cm^3 s^-1, and incident radiation fields ranging from 10 - 100 times the Galactic mean value. We find that these high-radiation, low-formation-rate models can also explain the enhanced N(4)/N(2) and N(5)/N(3) rotational excitation ratios in the Clouds. We use H2 column densities in low rotational states (J = 0 and 1) to derive a mean kinetic and/or rotational temperature = 82 +/- 21 K for clouds with N(H2) >= 10^16 cm^-2, similar to Galactic gas. We discuss the implications of this work for theories of star formation in low-metallicity environments. [Abstract abridged]Comment: 30 pages emulateapj, 14 figures (7 color), 7 tables, accepted for publication in the Astrophysical Journal, figures 11 and 12 compressed at slight loss of quality, see http://casa.colorado.edu/~tumlinso/h2/ for full version

    A Transcription Factor Map as Revealed by a Genome-Wide Gene Expression Analysis of Whole-Blood mRNA Transcriptome in Multiple Sclerosis

    Get PDF
    Background: Several lines of evidence suggest that transcription factors are involved in the pathogenesis of Multiple Sclerosis (MS) but complete mapping of the whole network has been elusive. One of the reasons is that there are several clinical subtypes of MS and transcription factors that may be involved in one subtype may not be in others. We investigate the possibility that this network could be mapped using microarray technologies and contemporary bioinformatics methods on a dataset derived from whole blood in 99 untreated MS patients (36 Relapse Remitting MS, 43 Primary Progressive MS, and 20 Secondary Progressive MS) and 45 age-matched healthy controls. Methodology/Principal Findings: We have used two different analytical methodologies: a non-standard differential expression analysis and a differential co-expression analysis, which have converged on a significant number of regulatory motifs that are statistically overrepresented in genes that are either differentially expressed (or differentially co-expressed) in cases and controls (e.g., VKROXQ6,pvalue,3.31E6;VKROX_Q6, p-value ,3.31E-6; VCREBP1_Q2, p-value ,9.93E-6, V$YY1_02, p-value ,1.65E-5). Conclusions/Significance: Our analysis uncovered a network of transcription factors that potentially dysregulate several genes in MS or one or more of its disease subtypes. The most significant transcription factor motifs were for the Early Growth Response EGR/KROX family, ATF2, YY1 (Yin and Yang 1), E2F-1/DP-1 and E2F-4/DP-2 heterodimers, SOX5, and CREB and ATF families. These transcription factors are involved in early T-lymphocyte specification and commitment as well as in oligodendrocyte dedifferentiation and development, both pathways that have significant biological plausibility in MS causation

    Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke

    Get PDF
    Genetic factors have been implicated in stroke risk but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) in ischemic stroke and its subtypes in 3,548 cases and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 cases and 6,281 controls. We replicated reported associations between variants close to PITX2 and ZFHX3 with cardioembolic stroke, and a 9p21 locus with large vessel stroke. We identified a novel association for a SNP within the histone deacetylase 9(HDAC9) gene on chromosome 7p21.1 which was associated with large vessel stroke including additional replication in a further 735 cases and 28583 controls (rs11984041, combined P = 1.87×10−11, OR=1.42 (95% CI) 1.28-1.57). All four loci exhibit evidence for heterogeneity of effect across the stroke subtypes, with some, and possibly all, affecting risk for only one subtype. This suggests differing genetic architectures for different stroke subtypes

    A Polymorphism in the HLA-DPB1 Gene Is Associated with Susceptibility to Multiple Sclerosis

    Get PDF
    We conducted an association study across the human leukocyte antigen (HLA) complex to identify loci associated with multiple sclerosis (MS). Comparing 1927 SNPs in 1618 MS cases and 3413 controls of European ancestry, we identified seven SNPs that were independently associated with MS conditional on the others (each ). All associations were significant in an independent replication cohort of 2212 cases and 2251 controls () and were highly significant in the combined dataset (). The associated SNPs included proxies for HLA-DRB1*15:01 and HLA-DRB1*03:01, and SNPs in moderate linkage disequilibrium (LD) with HLA-A*02:01, HLA-DRB1*04:01 and HLA-DRB1*13:03. We also found a strong association with rs9277535 in the class II gene HLA-DPB1 (discovery set , replication set , combined ). HLA-DPB1 is located centromeric of the more commonly typed class II genes HLA-DRB1, -DQA1 and -DQB1. It is separated from these genes by a recombination hotspot, and the association is not affected by conditioning on genotypes at DRB1, DQA1 and DQB1. Hence rs9277535 represents an independent MS-susceptibility locus of genome-wide significance. It is correlated with the HLA-DPB1*03:01 allele, which has been implicated previously in MS in smaller studies. Further genotyping in large datasets is required to confirm and resolve this association

    Accessing Mg‐Ion Storage in V 2 PS 10 via Combined Cationic‐Anionic Redox with Selective Bond Cleavage

    Get PDF
    Magnesium batteries attract interest as alternative energy‐storage devices because of elemental abundance and potential for high energy density. Development is limited by the absence of suitable cathodes, associated with poor diffusion kinetics resulting from strong interactions between Mg2+ and the host structure. V2PS10 is reported as a positive electrode material for rechargeable magnesium batteries. Cyclable capacity of 100 mAh g−1 is achieved with fast Mg2+ diffusion of 7.2 × ×{\times } 10−11–4 × ×{\times } 10−14 cm2 s−1. The fast insertion mechanism results from combined cationic redox on the V site and anionic redox on the (S2)2− site; enabled by reversible cleavage of S−S bonds, identified by X‐ray photoelectron and X‐ray absorption spectroscopy. Detailed structural characterisation with maximum entropy method analysis, supported by density functional theory and projected density of states analysis, reveals that the sulphur species involved in anion redox are not connected to the transition metal centres, spatially separating the two redox processes. This facilitates fast and reversible Mg insertion in which the nature of the redox process depends on the cation insertion site, creating a synergy between the occupancy of specific Mg sites and the location of the electrons transferred
    corecore