27 research outputs found

    Phylogenomic analysis of a global collection of Escherichia coli ST38: evidence of interspecies and environmental transmission?

    Get PDF
    We performed a comprehensive phylogenomic analysis of 925 extraintestinal pathogenic Escherichia coli (ExPEC) ST38 genomes from 38 countries and diverse hosts and sources. The phylogeny resolved two broad clades: A (593 strains; 91% human) and B (332 isolates; 42% human), each with distinct ST38 clusters linked to the carriage of specific bla CTX-M alleles, often in association with other antibiotic resistance genes, class 1 integrons and specific plasmid replicon types. Co-carriage of fyuA and irp2 virulence genes, a reliable proxy for carriage of the Yersinia high-pathogenicity island, featured in 580 (62.7%) genomes. ST38 lineages carrying combinations of ExPEC and intestinal pathogenic Escherichia coli virulence factors were also identified. The F plasmid replicon was identified in 536 (58%) genomes, and 112 of these (21%) carry cjrABC-senB, a virulence operon frequently identified in pandemic ExPEC sequence types. Most (108; 96.4%) cjrABC-senB+ ST38 isolates were from human and other sources, except food animals, and were associated with F5:A-:B10 (41 isolates), F1:A2:B20 (20 isolates), and F24:A-:B1 (15 isolates) F replicon types. ST38 genomes that were inferred to carry a ColV-F virulence plasmid (69; 7.4%) were mostly from human (12; 17.4%), avian (26; 37.7%), or poultry (10; 6.9%) sources. We identified multiple examples of putative inter-host and host-environment transmission events, where genomes differed by <35 SNPs. This work emphasizes the importance of adopting a One Health approach for phylogenomic studies that seek to improve understanding of antimicrobial resistance and pathogen evolution

    Assessing how metal reef restoration structures shape the functional and taxonomic profile of coral-associated bacterial communities

    Get PDF
    Significant threats to the long-term persistence of coral reefs have accelerated the adoption of coral propagation and out-planting approaches. However, how materials commonly used for propagation structures could potentially affect coral-associated bacterial communities remains untested. Here, we examined the impact of metal propagation structures on coral-associated bacterial communities. Fragments of the coral species Acropora millepora were grown on aluminium, sand/epoxy-coated steel (Reef Stars), and uncoated steel (rebar) structures. After 6 months, the functional and taxonomic profiles of coral-associated bacterial communities of propagated corals and reef colonies were characterised using amplicon (16S rRNA gene) and shotgun metagenomic sequencing. No differences in the phylogenetic structure or functional profile of coral-associated bacterial communities were observed between propagated corals and reef colonies. However, specific genes and pathways (e.g., lipid, nucleotide, and carbohydrate metabolism) were overrepresented in corals grown on different materials, and different taxa were indicative of the materials. These findings indicate that coral propagation on different materials may lead to differences in the individual bacterial taxa and functional potential of coral-associated bacterial communities, but how these contribute to changed holobiont fitness presents a key question to be addressed

    The intracellular chloride ion channel protein CLIC1 undergoes a redox-controlled structural transition.

    Get PDF
    Most proteins adopt a well defined three-dimensional structure; however, it is increasingly recognized that some proteins can exist with at least two stable conformations. Recently, a class of intracellular chloride ion channel proteins (CLICs) has been shown to exist in both soluble and integral membrane forms. The structure of the soluble form of CLIC1 is typical of a soluble glutathione S-transferase superfamily protein but contains a glutaredoxin-like active site. In this study we show that on oxidation CLIC1 undergoes a reversible transition from a monomeric to a non-covalent dimeric state due to the formation of an intramolecular disulfide bond (Cys-24-Cys-59). We have determined the crystal structure of this oxidized state and show that a major structural transition has occurred, exposing a large hydrophobic surface, which forms the dimer interface. The oxidized CLIC1 dimer maintains its ability to form chloride ion channels in artificial bilayers and vesicles, whereas a reducing environment prevents the formation of ion channels by CLIC1. Mutational studies show that both Cys-24 and Cys-59 are required for channel activity

    Crystal structure of a soluble form of the intracellular chloride ion channel CLIC1 (NCC27) at 1.4-A resolution.

    Get PDF
    Abstract CLIC1 (NCC27) is a member of the highly conserved class of chloride ion channels that exists in both soluble and integral membrane forms. Purified CLIC1 can integrate into synthetic lipid bilayers forming a chloride channel with similar properties to those observed in vivo. The structure of the soluble form of CLIC1 has been determined at 1.4-A resolution. The protein is monomeric and structurally homologous to the glutathioneS-transferase superfamily, and it has a redox-active site resembling glutaredoxin. The structure of the complex of CLIC1 with glutathione shows that glutathione occupies the redox-active site, which is adjacent to an open, elongated slot lined by basic residues. Integration of CLIC1 into the membrane is likely to require a major structural rearrangement, probably of the N-domain (residues 1–90), with the putative transmembrane helix arising from residues in the vicinity of the redox-active site. The structure indicates that CLIC1 is likely to be controlled by redox-dependent processes

    Complete Sequences of Multiple-Drug Resistant IncHI2 ST3 Plasmids in Escherichia coli of Porcine Origin in Australia

    Get PDF
    IncHI2 ST3 plasmids are known carriers of multiple antimicrobial resistance genes. Complete plasmid sequences from multiple drug resistant Escherichia coli circulating in Australian swine is however limited. Here we sequenced two related IncHI2 ST3 plasmids, pSDE-SvHI2, and pSDC-F2_12BHI2, from phylogenetically unrelated multiple-drug resistant Escherichia coli strains SvETEC (CC23:O157:H19) and F2_12B (ST93:O7:H4) from geographically disparate pig production operations in New South Wales, Australia. Unicycler was used to co-assemble short read (Illumina) and long read (PacBio SMRT) nucleotide sequence data. The plasmids encoded three drug-resistance loci, two of which carried class 1 integrons. One integron, hosting drfA12-orfF-aadA2, was within a hybrid Tn1721/Tn21, with the second residing within a copper/silver resistance transposon, comprising part of an atypical sul3-associated structure. The third resistance locus was flanked by IS15DI and encoded neomycin resistance (neoR). An oqx-encoding transposon (quinolone resistance), similar in structure to Tn6010, was identified only in pSDC-F2_12BHI2. Both plasmids showed high sequence identity to plasmid pSTM6-275, recently described in Salmonella enterica serotype 1,4,[5],12:i:- that has risen to prominence and become endemic in Australia. IncHI2 ST3 plasmids circulating in commensal and pathogenic E. coli from Australian swine belong to a lineage of plasmids often in association with sul3 and host multiple complex antibiotic and metal resistance structures, formed in part by IS26

    Global biogeography of SAR11 marine bacteria

    Get PDF
    The ubiquitous SAR11 bacterial clade is the most abundant type of organism in the worldĝ€™s oceans, but the reasons for its success are not fully elucidated. We analysed 128 surface marine metagenomes, including 37 new Antarctic metagenomes. The large size of the data set enabled internal transcribed spacer (ITS) regions to be obtained from the Southern polar region, enabling the first global characterization of the distribution of SAR11, from waters spanning temperatures ĝ̂'2 to 30°C. Our data show a stable co-occurrence of phylotypes within both ĝ€̃ tropicalĝ€™ (>20°C) and ĝ€̃ polarĝ€™ (<10°C) biomes, highlighting ecological niche differentiation between major SAR11 subgroups. All phylotypes display transitions in abundance that are strongly correlated with temperature and latitude. By assembling SAR11 genomes from Antarctic metagenome data, we identified specific genes, biases in gene functions and signatures of positive selection in the genomes of the polar SAR11ĝ€"genomic signatures of adaptive radiation. Our data demonstrate the importance of adaptive radiation in the organismĝ€™s ability to proliferate throughout the worldĝ€™s oceans, and describe genomic traits characteristic of different phylotypes in specific marine biomes. © 2012 EMBO and Macmillan Publishers Limited All rights reserved

    Comparative genomic analysis of toxin-negative strains of Clostridium difficile from humans and animals with symptoms of gastrointestinal disease

    Get PDF
    Background: Clostridium difficile infections (CDI) are a significant health problem to humans and food animals. Clostridial toxins ToxA and ToxB encoded by genes tcdA and tcdB are located on a pathogenicity locus known as the PaLoc and are the major virulence factors of C. difficile. While toxin-negative strains of C. difficile are often isolated from faeces of animals and patients suffering from CDI, they are not considered to play a role in disease. Toxin-negative strains of C. difficile have been used successfully to treat recurring CDI but their propensity to acquire the PaLoc via lateral gene transfer and express clinically relevant levels of toxins has reinforced the need to characterise them genetically. In addition, further studies that examine the pathogenic potential of toxin-negative strains of C. difficile and the frequency by which toxin-negative strains may acquire the PaLoc are needed. Results: We undertook a comparative genomic analysis of five Australian toxin-negative isolates of C. difficile that lack tcdA, tcdB and both binary toxin genes cdtA and cdtB that were recovered from humans and farm animals with symptoms of gastrointestinal disease. Our analyses show that the five C. difficile isolates cluster closely with virulent toxigenic strains of C. difficile belonging to the same sequence type (ST) and have virulence gene profiles akin to those in toxigenic strains. Furthermore, phage acquisition appears to have played a key role in the evolution of C. difficile. Conclusions: Our results are consistent with the C. difficile global population structure comprising six clades each containing both toxin-positive and toxin-negative strains. Our data also suggests that toxin-negative strains of C. difficile encode a repertoire of putative virulence factors that are similar to those found in toxigenic strains of C. difficile, raising the possibility that acquisition of PaLoc by toxin-negative strains poses a threat to human health. Studies in appropriate animal models are needed to examine the pathogenic potential of toxin-negative strains of C. difficile and to determine the frequency by which toxin-negative strains may acquire the PaLoc

    Critical Assessment of Metagenome Interpretation:A benchmark of metagenomics software

    Get PDF
    International audienceIn metagenome analysis, computational methods for assembly, taxonomic profilingand binning are key components facilitating downstream biological datainterpretation. However, a lack of consensus about benchmarking datasets andevaluation metrics complicates proper performance assessment. The CriticalAssessment of Metagenome Interpretation (CAMI) challenge has engaged the globaldeveloper community to benchmark their programs on datasets of unprecedentedcomplexity and realism. Benchmark metagenomes were generated from newlysequenced ~700 microorganisms and ~600 novel viruses and plasmids, includinggenomes with varying degrees of relatedness to each other and to publicly availableones and representing common experimental setups. Across all datasets, assemblyand genome binning programs performed well for species represented by individualgenomes, while performance was substantially affected by the presence of relatedstrains. Taxonomic profiling and binning programs were proficient at high taxonomicranks, with a notable performance decrease below the family level. Parametersettings substantially impacted performances, underscoring the importance ofprogram reproducibility. While highlighting current challenges in computationalmetagenomics, the CAMI results provide a roadmap for software selection to answerspecific research questions

    cerebis/antarctic_ha: Made process fully automated

    No full text
    Previously each step was manually executed. This has just been made an automated process

    The integration of fine-scale DNA-DNA associations by inclusion of Hi-C DNA cross-linking information into metagenomic community analysis

    Full text link
    University of Technology Sydney. Faculty of Science.Much of our understanding of the microbial world has been obtained using culture-based methodologies, a paradigm that has stood since the 19th century. And yet it has long been known that most of the Earth’s microbial species are resistant to laboratory culture. It is reasonable to expect; therefore, that applying equal scrutiny to all microbial life will lead to significant discoveries. Motivated by this, metagenomics eliminates the culturing dependency by directly sampling DNA from an environment; successfully shedding light on the once unseen majority. The technical limitations of present-day sequencing technologies have meant, however, that in achieving culture-independence, traditional shotgun metagenomic sequencing experiments make a considerable sacrifice. That sacrifice comes in the form of information loss where, in preparing DNA for sequencing, much of the “same-cell” and “same-chromosome” information is destroyed; information which is essential when reconstructing the individual genomes. Purely computational solutions to overcoming this sacrifice have proved insufficient; surpassed instead by strategies which employ changes in the experimental design aimed at reducing the information loss. A recent strategy is the inclusion of a new form of sequencing data, provided by the Hi-C sequencing technique. Originally conceived to study the three-dimensional structure of chromatin, the Hi-C sequencing technique captures in vivo proximity interactions between DNA loci in an all-vs-all manner. When applied to direct metagenomic sampling, the physical structure of the microbial community (chromosome, cell and community) strongly influences the probability of observing proximity interactions between loci, and this pronounced modulation can be exploited to recover the information lost during shotgun sequencing. This thesis details the effective integration of Hi-C into metagenomic sequencing studies to accurately reconstruct individual genomes, thereby deconvoluting the metagenome. To accomplish this, first an investigation of the effectiveness of graph clustering as a means of metagenome deconvolution was conducted; where Hi-C proximity interactions defined the edges and assembly contigs defined the nodes. A parametric sweep of experimental and community composition parameters was carried out, exploring how the degree of evolutionary divergence (from species to strains) affected the quality of deconvolution. For each iterate in the sweep, a ground-truth was constructed and quality assessed using a novel external validation measure supporting overlapping clusters and variable object weights. This work led to the design and implementation of the first metagenomic Hi-C read-pair simulator, sim3C, capable of simulating complex community definitions and simple three-dimensional structural elements. While in pursuit of the final objective of metagenome deconvolution, sim3C enabled an externally validated development process. Lastly, as the outcome of the final objective, bin3C is demonstrated; an open-source solution to Hi-C driven metagenome deconvolution. In an unsupervised manner, bin3C reconstructs individual genomes from metagenomic data. Using external validation of simulated data, bin3C is shown to have high precision and good recall. When a real human microbiome was analysed, bin3C achieved leading performance, resolving 20 more nearly-complete MAGs (57% gain) than its closest competitor
    corecore