165 research outputs found

    Projecting marine mammal distribution in a changing climate

    Get PDF
    Climate-related shifts in marine mammal range and distribution have been observed in some populations; however, the nature and magnitude of future responses are uncertain in novel environments projected under climate change. This poses a challenge for agencies charged with management and conservation of these species. Specialized diets, restricted ranges, or reliance on specific substrates or sites (e.g., for pupping) make many marine mammal populations particularly vulnerable to climate change. High-latitude, predominantly ice-obligate, species have experienced some of the largest changes in habitat and distribution and these are expected to continue. Efforts to predict and project marine mammal distributions to date have emphasized data-driven statistical habitat models. These have proven successful for short time-scale (e.g., seasonal) management activities, but confidence that such relationships will hold for multi-decade projections and novel environments is limited. Recent advances in mechanistic modeling of marine mammals (i.e., models that rely on robust physiological and ecological principles expected to hold under climate change) may address this limitation. The success of such approaches rests on continued advances in marine mammal ecology, behavior, and physiology together with improved regional climate projections. The broad scope of this challenge suggests initial priorities be placed on vulnerable species or populations (those already experiencing declines or projected to undergo ecological shifts resulting from climate changes that are consistent across climate projections) and species or populations for which ample data already exist (with the hope that these may inform climate change sensitivities in less well observed species or populations elsewhere). The sustained monitoring networks, novel observations, and modeling advances required to more confidently project marine mammal distributions in a changing climate will ultimately benefit management decisions across time-scales, further promoting the resilience of marine mammal populations

    Key issues in assessing threats to sea turtles:knowledge gaps and future directions

    Get PDF
    Sea turtles are an iconic group of marine megafauna that have been exposed to multiple anthropogenic threats across their different life stages, especially in the past decades. This has resulted in population declines, and consequently many sea turtle populations are now classified as threatened or endangered globally. Although some populations of sea turtles worldwide are showing early signs of recovery, many still face fundamental threats. This is problematic since sea turtles have important ecological roles. To encourage informed conservation planning and direct future research, we surveyed experts to identify the key contemporary threats (climate change, direct take, fisheries, pollution, disease, predation, and coastal and marine development) faced by sea turtles. Using the survey results and current literature, we also outline knowledge gaps in our understanding of the impact of these threats and how targeted future research, often involving emerging technologies, could close those gaps.</p

    Climate change vulnerability of cetaceans in Macaronesia : Insights from a trait-based assessment

    No full text
    Over the last decades global warming has caused an increase in ocean temperature, acidification and oxygen loss which has led to changes in nutrient cycling and primary production affecting marine species at multiple trophic levels. While knowledge about the impacts of climate change in cetacean's species is still scarce, practitioners and policymakers need information about the species at risk to guide the implementation of conservation measures. To assess cetacean's vulnerability to climate change in the biogeographic region of Macaronesia, we adapted the Marine Mammal Climate Vulnerability Assessment (MMCVA) method and applied it to 21 species management units using an expert elicitation approach. Results showed that over half (62%) of the units assessed presented Very High (5 units) or High (8 units) vulnerability scores. Very High vulnerability scores were found in archipelago associated units of short-finned pilot whales (Globicephala macrorhynchus) and common bottlenose dolphins (Tursiops truncatus), namely in the Canary Islands and Madeira, as well as Risso's dolphins (Grampus griseus) in the Canary Islands. Overall, certainty scores ranged from Very High to Moderate for 67% of units. Over 50% of units showed a high potential for distribution, abundance and phenology changes as a response to climate change. With this study we target current and future information needs of conservation managers in the region, and guide research and monitoring efforts, while contributing to the improvement and validation of trait-based vulnerability approaches under a changing climate.This research was supported by the European Union's Horizon 2020 research and innovation programme under grant agreement No 776661, project “SOCLIMPACT—DownScaling CLImate imPACTs and decarbonisation pathways in EU islands and enhancing socioeconomic and non-market evaluation of Climate Change for Europe, for 2050 and beyond”.info:eu-repo/semantics/publishedVersio

    A novel expert-driven methodology to develop thermal response curves and project habitat thermal suitability for cetaceans under a changing climate

    No full text
    Over the last decades, global warming has contributed to changes in marine species composition, abundance and distribution, in response to changes in oceanographic conditions such as temperature, acidification, and deoxygenation. Experimentally derived thermal limits, which are known to be related to observed latitudinal ranges, have been used to assess variations in species distribution patterns. However, such experiments cannot be undertaken on free-swimming large marine predators with wide-range distribution, like cetaceans. An alternative approach is to elicit expert's knowledge to derive species' thermal suitability and assess their thermal responses, something that has never been tested in these taxa. We developed and applied a methodology based on expert-derived thermal suitability curves and projected future responses for several species under different climate scenarios. We tested this approach with ten cetacean species currently present in the biogeographic area of Macaronesia (North Atlantic) under Representative Concentration Pathways 2.6, 4.5 and 8.5, until 2050. Overall, increases in annual thermal suitability were found for Balaenoptera edeni, Globicephala macrorhynchus, Mesoplodon densirostris, Physeter macrocephalus, Stenella frontalis, Tursiops truncatus and Ziphius cavirostris. Conversely, our results indicated a decline in thermal suitability for B. physalus, Delphinus delphis, and Grampus griseus. Our study reveals potential responses in cetaceans' thermal suitability, and potentially in other highly mobile and large predators, and it tests this method's applicability, which is a novel application for this purpose and group of species. It aims to be a cost-efficient tool to support conservation managers and practitioners.AS was funded by the Portuguese Foundation for Science and Technology (FCT) through the PhD grant PD/BD/135352/2017. AS, REC, HC and TCL acknowledge the support from the Portuguese Foundation for Science and Technology (FCT) under the programmatic funding granted to cE3c Research Centre (UIDP/00329/2020). PA was funded by the Program ‘Agustín de Betancourt’ of La Laguna University and Cabildo de Tenerife throughout the project CETTUS. AD, FA and MF had the support of the Oceanic Observatory of Madeira throughout the project M1420-01-0145-FEDER-000001-OOM, of the Portuguese Foundation for Science and Technology (FCT) throughout the strategic projects UIDB/04292/2020 and UIDP/04292/2020 granted to MARE, LA/P/0069/2020 granted to the Associate Laboratory ARNET, of the ARDITI - Madeira's Regional Agency for the Development of Research Technology and Innovation throughout the project M1420-09-5369-FSE000002, and of the Project Intertagua (Interreg MAC2/1.1a/385). MDL was funded as a contractor of the US Government under contract number: 1305M418DNFF0012. CFS acknowledges funding from FCT under the strategic project UIDB/ 04292/2020 awarded to MARE, project LA/P/0069/2020 granted to the Associate Laboratory ARNET, and FCT research contract 2020.03704. CEECIND. This research was supported by the European Union‘s Horizon 2020 research and innovation programme under grant agreement No 776661, project “SOCLIMPACT—DownScaling CLImate imPACTs and decarbonisation pathways in EU islands and enhancing socioeconomic and non-market evaluation of Climate Change for Europe, for 2050 and beyond”.info:eu-repo/semantics/publishedVersio

    Key issues in assessing threats to sea turtles: knowledge gaps and future directions

    No full text
    Sea turtles are an iconic group of marine megafauna that have been exposed to multiple anthropogenic threats across their different life stages, especially in the past decades. This has resulted in population declines, and consequently many sea turtle populations are now classified as threatened or endangered globally. Although some populations of sea turtles worldwide are showing early signs of recovery, many still face fundamental threats. This is problematic since sea turtles have important ecological roles. To encourage informed conservation planning and direct future research, we surveyed experts to identify the key contemporary threats (climate change, direct take, fisheries, pollution, disease, predation, and coastal and marine development) faced by sea turtles. Using the survey results and current literature, we also outline knowledge gaps in our understanding of the impact of these threats and how targeted future research, often involving emerging technologies, could close those gaps

    Vulnerability to climate change of United States marine mammal stocks in the western North Atlantic, Gulf of Mexico, and Caribbean.

    No full text
    Climate change and climate variability are affecting marine mammal species and these impacts are projected to continue in the coming decades. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species using currently available information. We conducted a trait-based climate vulnerability assessment using expert elicitation for 108 marine mammal stocks and stock groups in the western North Atlantic, Gulf of Mexico, and Caribbean Sea. Our approach combined the exposure (projected change in environmental conditions) and sensitivity (ability to tolerate and adapt to changing conditions) of marine mammal stocks to estimate vulnerability to climate change, and categorize stocks with a vulnerability index. The climate vulnerability score was very high for 44% (n = 47) of these stocks, high for 29% (n = 31), moderate for 20% (n = 22), and low for 7% (n = 8). The majority of stocks (n = 78; 72%) scored very high exposure, whereas 24% (n = 26) scored high, and 4% (n = 4) scored moderate. The sensitivity score was very high for 33% (n = 36) of these stocks, high for 18% (n = 19), moderate for 34% (n = 37), and low for 15% (n = 16). Vulnerability results were summarized for stocks in five taxonomic groups: pinnipeds (n = 4; 25% high, 75% moderate), mysticetes (n = 7; 29% very high, 57% high, 14% moderate), ziphiids (n = 8; 13% very high, 50% high, 38% moderate), delphinids (n = 84; 52% very high, 23% high, 15% moderate, 10% low), and other odontocetes (n = 5; 60% high, 40% moderate). Factors including temperature, ocean pH, and dissolved oxygen were the primary drivers of high climate exposure, with effects mediated through prey and habitat parameters. We quantified sources of uncertainty by bootstrapping vulnerability scores, conducting leave-one-out analyses of individual attributes and individual scorers, and through scoring data quality for each attribute. These results provide information for researchers, managers, and the public on marine mammal responses to climate change to enhance the development of more effective marine mammal management, restoration, and conservation activities that address current and future environmental variation and biological responses due to climate change

    Exposure factor mean scores for all scored stocks.

    No full text
    Exposure factor mean scores for 108 U.S. marine mammal stocks in the western North Atlantic, Gulf of Mexico, and Caribbean Sea. The vertical bar represents the median; the box is bounded by the first and third quartiles; whiskers represent 1.5 times the inter-quartile range; points represent all outlying values.</p

    Values used in the NOAA climate change web portal to generate climate exposure maps for 108 marine mammal stocks in the western North Atlantic, Gulf of Mexico, and Caribbean Sea.

    No full text
    Values used in the NOAA climate change web portal to generate climate exposure maps for 108 marine mammal stocks in the western North Atlantic, Gulf of Mexico, and Caribbean Sea.</p
    corecore