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Climate-related shifts in marine mammal range and distribution have been observed

in some populations; however, the nature and magnitude of future responses are

uncertain in novel environments projected under climate change. This poses a

challenge for agencies charged with management and conservation of these species.

Specialized diets, restricted ranges, or reliance on specific substrates or sites (e.g.,

for pupping) make many marine mammal populations particularly vulnerable to

climate change. High-latitude, predominantly ice-obligate, species have experienced

some of the largest changes in habitat and distribution and these are expected to

continue. Efforts to predict and project marine mammal distributions to date have

emphasized data-driven statistical habitat models. These have proven successful for

short time-scale (e.g., seasonal) management activities, but confidence that such

relationships will hold for multi-decade projections and novel environments is limited.

Recent advances in mechanistic modeling of marine mammals (i.e., models that rely

on robust physiological and ecological principles expected to hold under climate

change) may address this limitation. The success of such approaches rests on

continued advances in marine mammal ecology, behavior, and physiology together

with improved regional climate projections. The broad scope of this challenge

suggests initial priorities be placed on vulnerable species or populations (those already

experiencing declines or projected to undergo ecological shifts resulting from climate
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changes that are consistent across climate projections) and species or populations for

which ample data already exist (with the hope that these may inform climate change

sensitivities in less well observed species or populations elsewhere). The sustained

monitoring networks, novel observations, and modeling advances required to more

confidently project marine mammal distributions in a changing climate will ultimately

benefit management decisions across time-scales, further promoting the resilience of

marine mammal populations.

Keywords: marine mammal distribution and abundance, climate-change, marine ecosystems, predicting and

forecasting, Marine mammal conservation

INTRODUCTION

Marine mammals are exposed to a variety of threats and
habitat perturbations from human activities (e.g., by-catch
incidental to commercial fisheries, industrial noise, ship-strike)
on regional and global scales. Human activities can lead to
changes in marine mammal distribution, such as extirpation due
to whaling or hunting [e.g., southern right whales (Eubalaena
australis) in New Zealand Patenaude et al., 1998; Carroll
et al., 2014] and temporary abandonment of portions of
a range [e.g., gray whales (Eschrichtius robustus) in Laguna
Guerrero Negro, Baja California, Mexico Bryant et al., 1984].
Alteration of oceanographic conditions and processes due to
anthropogenic global climate change are expected to profoundly
influence ecosystems (i.e., ocean warming, acidification, and
deoxygenation) (Burrows et al., 2011; IPCC, 2014) and, in
turn, marine mammal distributions in the foreseeable future
(Learmonth et al., 2006; Schumann et al., 2013; Laidre et al.,
2015). While the full nature and scope of climate-driven impacts
on marine mammals are unclear, changes in population ranges
and regional abundance are expected (Learmonth et al., 2006).

Shifting ranges of various marine species have been observed
across all ocean regions (Poloczanska et al., 2016). Integration of
long time series and modeling studies have demonstrated climate
change-associated distributional changes in numerous marine
fish and invertebrate populations (e.g., Perry et al., 2005; Nye
et al., 2009; Pinsky et al., 2013; Poloczanska et al., 2013; Walsh
et al., 2015), including commercially important North Atlantic
Ocean species in multi-billion dollar fishing industries (NMFS,
2016). Additional shifts in these taxa, as well as the potential for
accelerated rates of change, are expected as warming continues
(Hazen et al., 2013; Lynch et al., 2015; Hare et al., 2016).

Shifts have included important prey items for marine
mammals. Rising temperatures in the Gulf ofMaine, for example,
have prompted Calanus finmarchicus, a major food source for
herring, mackerel, and North Atlantic right whales (Eubalaena
glacialis), to prematurely exit winter dormancy, denying key
predators a lipid rich food source in spring and summer (Runge
et al., 2015). Such changes in the quality, timing, and abundance
of key zooplankton and forage fish species may confound efficient
transfer of marine primary and secondary production to higher
trophic levels with corresponding cascading implications for
food webs (Peterson, 2009; Lauria et al., 2012; Sydeman et al.,
2015), including those involving marine mammals (Trathan
et al., 2007; Moore and Huntington, 2008).

Range shifts associated with climate change have been
observed in some marine mammal populations (e.g., Kovacs
et al., 2011; Clarke et al., 2013; Hamilton et al., 2015). Substantive
shifts in the distribution of marine mammals and other large
marine vertebrates have been predicted (e.g., IWC, 2010; Gilles
et al., 2011; Becker et al., 2012; Hezel et al., 2012; Keller et al.,
2012; Gregr et al., 2013; Hazen et al., 2013; Mannocci et al.,
2014). As such shifts occur in novel environments expected
under climate change, protective measures for marine mammals
will need to be adapted. However, capabilities available to
managers to anticipate and react to such changes are currently
limited.

MARINE MAMMAL
MANAGEMENT–AUTHORITIES AND
MANDATES

Conservation of marine mammals and their habitats is
generally the responsibility of federal, state, and provincial
governments, in some cases working with co-management
partners. Anthropogenic threats to marine mammal populations
are largely managed in the United States through policies and
conservation activities developed under the Marine Mammal
Protection Act (MMPA) and Endangered Species Act (ESA) and
in other nations through similar statutes (e.g., Canada’s Species
at Risk Act; Australia’s Environment Protection and Biodiversity
Conservation Act). Under these statutes, agencies are required
to develop programs to assess and permit various ocean-
use activities (e.g., oil and gas development and production,
renewable energy facility siting, and development), minimize
threats to marine mammal habitat, engage in endangered
species recovery planning, and assess global climate change
as it impacts the ecology and health of marine mammal
populations. In addition, marine mammals can be large
consumers of commercially important fish species, and any
shifts in their distribution may therefore be of concern to
fisheries management programs that also will need to adapt
to such changes. Moreover, marine mammals are integral
parts of their ecosystems—as both predators and prey—and
ecosystem-based fishery management will need to take into
account any changes in marine mammal distribution, abundance
and predator-prey relationships. Agencies involved in marine
mammal management and conservation, as well as those engaged
inmanaging subsistence harvests, will increasingly needmeans to
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anticipate shifts in marine mammal distribution and abundance
resulting from climate change (e.g., Laidre et al., 2015).

While most agencies have broad authority to reduce
anthropogenic threats (e.g., those arising from commercial,
industrial, or military activities), agencies charged with
management do not currently have the ability to regulate
greenhouse gases, the primary driver of global climate change
(IPCC, 2014). Thus, limited resources, regulatory inertia, and
lack of public consensus constrain many agencies’ abilities to
react with appropriate protective measures to climate-driven
changes in marine mammal distribution. In addition, as centers
of abundance or areas of aggregation shift when existing habitats
undergo change, existing threat-reductionmeasures may become
obsolete or requiremodification asmarinemammal distributions
shift. For example, the location of a renewable energy or other
industrial facility may be selected based on an assessment that
its effects on marine mammal populations are anticipated to
be relatively low. However, if the composition and regional
abundance of those populations change, the facility may have
greater overall impact than originally expected, and permitting
of the facility may need to be re-assessed with a substantial
investment of time and resources and lost opportunities to
protect key species. Marine Protected Areas (including for
marine mammals; Hoyt, 2011) and critical habitats are also
established based on the existing occurrence of marine taxa; but
these areas would have little conservation value if key species
undergo shifts in distribution. An ability to track and anticipate
such changes would aid in the protection of those species.

In rapidly changing ecosystems, including those in high-
latitudes (Forcada et al., 2006; Laidre et al., 2008, 2015; Ragen
et al., 2008), or in instances where populations are already in
decline (e.g., Shelden et al., 2015), managers face a heightened
need to respond with appropriate protective measures. Near-
and long-term conservation planning would be enhanced by
increased capacity to anticipate marine mammal response to
changes in habitats brought about by climate change. Long-term
planning may be particularly important given the long lifespans,
long maturation periods, and low recruitment rates of many
marine mammal species and will be important for those with
complex social structures.

Conservation and planning actions occur on various spatial
scales and temporal planning horizons (Figure 1), motivating
marine mammal distribution and abundance predictions across
a similar range of space and time-scales. These may include
nowcasts and short-term (<1 week) forecasts (Hazen et al.,
2016), to seasonal predictions up to 6 months in the future,
to multi-year forecasts, increasing to decadal or century-scale
projections. In the United States for example, endangered species
recovery plans are updated on 5-year cycles, while permitting
for industrial activities, such as the siting or construction of
offshore renewable energy facilities and oil and gas exploration
and development activities, tends to be on the order of decades
(BOEM, 2016; Figure 1). On even longer time scales, designation
of endangered status often necessitates evaluation of species
persistence on the order of a century (e.g., Angliss et al., 2002).
Conversely, measures developed to reduce the risk of whales
being struck by ships (e.g., Silber et al., 2012) or limit marine
mammal exposure tomilitary operations (e.g., NOAA, 2015)may

be established in finite areas and be implemented only for seasons
to a few years (NOAA, 2013). While the emphasis here is meeting
the challenge of projecting marine mammal distributions in a
changing climate on multi-decadal to century time-scales, we
note that decisions across multiple time-scales can contribute to
the long-term resilience of marine mammal populations. We will
thus discuss and contrast approaches across time-scales.

MARINE MAMMAL ECOLOGY AND
CLIMATE CHANGE

Marine mammals have unique ecologies with complex life cycles
that make predicting responses to climate change more difficult
and, in some cases, make the species especially vulnerable to
climate change impacts. Perhaps most notable amongst these
traits in the context of climate change is endothermy, which
provides for a broader range of temperature tolerance in marine
mammals relative to fish. This could be a mechanism that adds
resilience in marine mammal populations, but also makes for less
predictable responses relative to fish or invertebrates that show
isotherm-following behaviors (Pinsky et al., 2013).

Endothermy also elevates the importance of predicting
changes in food resources relative to warming signals. While
progress has been made in projecting large-scale prey resource
changes (e.g., Stock et al., 2014; Lefort et al., 2015), marine
mammal species such as blue whales (Balaenoptera musculus)
show tight coupling to smaller scale oceanographic features
(Fiedler et al., 1998; Moore et al., 2002; Croll et al., 2005)
associated with high euphausiid (krill) abundance (Santora et al.,
2011). Similar relations have been exhibited by bowhead whales
(Balaena mysticetus) across the Arctic (Laidre et al., 2007; Citta
et al., 2015; George et al., 2015) and North Atlantic right whales
(Baumgartner et al., 2003; Baumgartner and Mate, 2005). Such
aggregations remain poorly resolved in even high-resolution
models andmay exhibit climate change responses that differ from
large-scale changes.

Other common traits are long lifespan, low birth rate, and
long generation time. These traits are not conducive to rapid
evolutionary adaptation (Trathan et al., 2007), making behavioral
flexibility critical for adaptation to changing climatologies.
Fortunately, some marine mammals have exhibited substantial
behavioral and prey selection flexibility (Palacios et al., 2013). For
example, humpback whales (Megaptera novaeangliae) remained
abundant and were suspected to adapt foraging behavior to
new prey species when climate conditions were unfavorable
to common target prey species (Benson et al., 2002; Fleming
et al., 2016). Failure to account for such flexibility could lead to
unrealistically pessimistic projections.

Alternatively, many marine mammal species exhibit strong
dependence on habitat types or oceanographic features that
may be highly vulnerable to climate change, or high fidelity to
particular sites or migration routes. For example, ringed seals
(Pusa hispida) rely on sea ice habitat for pupping and sufficient
snow to hide young from predators (Smith and Stirling, 1975;
Laidre et al., 2008; Kovacs et al., 2011; NOAA, 2012). Hawaiian
monk seals (Neomonachus schauinslandi) may lose haul-out sites
to sea level rise; thus, understanding the climate-related threats to
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FIGURE 1 | Various examples of national and international management activities mapped conceptually along generalized temporal and spatial (both granularity and

extent) scales. Management and research objectives on appropriate spatial/temporal scales will dictate model type selection and data requirements. AUS, Australia;

BiOp, Biological Opinions; CFP, Common Fisheries Policy; CCAMLR, Commission for the Conservation of Antarctic Marine Living Resources; ESA, Endangered

Species Act; EIA, Environmental Impact Assessments; EPBCA, Environment Protection and Biodiversity Conservation Act; EU, European Union; FMP, Fishery

Management Plans; IFMP, Integrated Fisheries Management Plans; IMMA, Important Marine Mammal Areas; Int, International; IUCN, International Union for

Conservation of Nature; NMS, National Marine Sanctuaries; RFMO, Regional Fishery Management Organizations; SAC, Special Areas of Conservation; SARA,

Species at Risk Act; UK, United Kingdom; UNCLOS, United Nations Convention of the Law of the Sea.

this species might require a different type of model (e.g., dynamic
shoreline evolution) for forecasting its distribution (Baker et al.,
2006). Failure to account for unique vulnerabilities arising from
such life-cycle strategies may result in unrealistically optimistic
projections.

Lastly, some marine mammals are near the top of marine food
webs, introducing a potentially strong dependence on integrated
food web effects (Doney et al., 2012; Sydeman et al., 2015). Recent
studies suggest robust amplification of productivity changes at
higher trophic levels (Chust et al., 2014; Stock et al., 2014, 2017;
Lefort et al., 2015). This potential sensitivity is further heightened
by mid-trophic level fishing (Forcada et al., 2012), motivating
work to analyzemarinemammal responses in a food web context.

CURRENT APPROACHES FOR
PREDICTING AND PROJECTING MARINE
MAMMAL OCCURRENCE AND
DISTRIBUTION

Two components are essential for predicting marine mammal
occurrence and distribution. The first is a model capable

of estimating marine mammal distribution and/or abundance
given a set of physical and/or ecological variables (e.g., ocean
temperature, food resources). The second is the capability to
project the states of the relevant physical and ecological variables
at the time and space scales of interest. Models are designed
to address a variety of research questions (Guisan and Thuiller,
2005), and a range of model types have been used for the first
component (Gregr et al., 2013; Palacios et al., 2013). Early efforts
employed simple visual mapping to describe marine mammal
seasonal occurrence. For example, Winn et al. (1986) used
North Atlantic right whale sighting records to develop a simple
conceptual model of the species’ seasonal distribution.

Statistical habitat models use environmental data and species

occurrence data to generate predictions of the distribution of the
species. The environmental predictors chosen for these models

usually pertain to biological mechanisms (e.g., temperature is

an important physiological constraint; chlorophyll-a has often
proved to be a meaningful proxy for ocean productivity and
food resources), which helps to avoid spurious correlations.
For example, Baumgartner and Mate (2005) used water depth,
depth gradient, bottom hydrographic properties, sea surface
temperature (SST), chlorophyll concentration, and other features
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to characterize North Atlantic right whale habitat. Becker et al.
(2016) developed predictive habitat-based models of cetacean
density and distribution for a number of species in the California
Current System using a variety of dynamic environmental
variables, including temperature, salinity, sea surface height, and
mixed layer depth. Models used to predict distribution patterns,
given observed environmental variables, may also be used to
project a species’ distribution using expected future values of the
environmental variables (Becker et al., 2012).

In Panels 1 and 2, we highlight two examples of such statistical
models in detail. Case study 1 describes “nowcasts” (i.e., estimates
of the current ocean state) and seasonal predictions for 11 marine
mammal species in the California Current based on habitat-based
density models (Becker et al., 2016). Case study 2 applies similar
empirically-driven approaches to assess potential challenges for
ringed seal pup survival related to sea-ice and snowpack changes
projected over the next century due to global warming (Hezel
et al., 2012).

There are several limitations associated with statistical
correlative models when used in a predictive context (Elith
and Graham, 2009; Monahan, 2009; Webber et al., 2011). First,
the relationships inferred from field data may not adequately
describe the critical factors determining species distributions.
Existing data on species distributions reflect the realized
rather than potential habitat (i.e., the area where the intrinsic
rate of population growth is >0; Araujo and Guisan, 2006;
Soberon and Nakamura, 2009). This realized habitat implicitly
reflects interactions with predators, prey species, and barriers
to movement and comprises a level of structural detail not
generally included in sets of climate predictors or even present
in climate change projections. Predictions and projections
based on realized niches thus presume that the impacts of
these implicit factors act to maintain present realized habitat
boundaries.

A second limitation is that, although the mechanisms by
which environmental conditions affect biology and species
distributions are considered, these relationships are empirically-
defined from available data on past conditions and may not
represent future conditions. Stationarity of these relationships
is assumed when such models are used in a predictive context.
This is clearly reasonable when predicting for conditions that
have analogs in the historical record, but becomes less reliable for
responses to extreme events or for the novel conditions expected
under climate change (Williams et al., 2007; Hothorn et al.,
2011).

Relatively recent advances in observational data collection
and access to large marine environmental databases (e.g.,
the National Oceanographic Data Center; NCEI, 2017 or the
Southwest Fisheries Science Center’s ERDDAP site, SWFSC,
2017) provide an improved foundation for statistical habitat
models, but would not address structural uncertainties in models
that arise from incomplete understanding of species interactions
and physiological thresholds. This level of knowledge would
instead require a shift from reliance on correlations between
marine mammals and their environment toward models that
more clearly establish functional relationships with the physical
and biological underpinnings of habitat utilization (Gregr et al.,

2013; Cribb et al., 2015). These relationships enable development
of process-based models that yield robust predictions of species
distributions rooted in ecological understanding (Palacios et al.,
2013). While such models have been traditionally developed
for a broad range of zooplankton and higher trophic level
species, including forage fish (e.g., Ito et al., 2015; Rose et al.,
2015), migratory predators (e.g., Lehodey et al., 2008) and
other commercially and ecologically important species (e.g.,
Cury et al., 2008; Fiechter et al., 2015), marine mammal case
studies are also starting to appear. For example, California
sea lion (Zalophus californianus) foraging patterns and feeding
success were simulated using sub-models for biogeochemical
processes, regional ocean circulation, and forage fish abundance
(Fiechter et al., 2016). The parameterization of more mechanistic
models is challenging, but will also benefit from data collection
advances referenced above. In data-poor situations, mechanistic
models informed by general principles can help define the
scope of potential marine mammal responses by testing the
implications of general principles drawn from theory or data-rich
regions (Friedrichs et al., 2007). While such exercises inevitably
lead to large uncertainty bounds, they can help prioritize
future observations on quantities or processes within existing
uncertainty bounds (Plaganyi et al., 2011).

Predictions and projections for future states of drivers
of marine resource abundance and distribution are generally
derived from global climate and earth system models (Stock
et al., 2011; Hobday et al., 2016; Tommasi et al., 2017a).
Several characteristics of global climate and earth system models
have shaped their application in projecting marine mammal
distribution and abundance under climate change (Stock et al.,
2011). The coarse resolution of global climate models (often
1–2◦, or 100–200 km ocean grids in past assessments of the
Intergovernmental Panel on Climate Change, IPCC) can generate
significant coastal biases (Scales et al., 2017). Large inter-
model differences in regional climate change projections limit
confidence in scenarios for the future states of drivers of
marine resource distribution and abundance (Hawkins and
Sutton, 2009; Frölicher et al., 2016). Limited resolution of
marine food webs in most earth system models may under-
estimate the potential amplification of climate change effects for
higher trophic levels, particularly at regional scales (Chust et al.,
2014; Stock et al., 2014, 2017; Lefort et al., 2015). As a result
of these limitations, confidence in predicting the magnitude
and direction of climate change trends that are capable of
altering marine resource distributions is generally greatest at
ocean-basin spatial scales and multi-decadal to century time-
scales. In the absence of refined resolution via downscaling or
high-resolution global models (see below), regional inferences
must focus on the magnitude and direction of changes due
to large-scale greenhouse gas accumulation, and include the
caveat that unresolved regional responses may significantly
modify these trends (e.g., Hare et al., 2012; Lynch et al.,
2015).

Global climate model configurations similar to those used
for long-term climate change projections are also applied to
short-term predictions on seasonal to multi-annual scales that
have proven valuable for a range of marine resource applications
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(Hobday et al., 2016; Tommasi et al., 2017a). Analysis to date has
suggested that skillful seasonal and, in some cases, multi-annual
sea surface temperature predictions are possible for many regions
despite coarse model resolution (Stock et al., 2015; Tommasi
et al., 2017b). Seasonal to multi-annual predictions of ocean
productivity, oxygen and other potential factors important to
marine resource distributions and abundance have provided
some cause for optimism (Séférian et al., 2014; Gehlen et al.,
2015), but have not been assessed with the same rigor as ocean
temperatures, in part due to the sparsity of data with which
to robustly characterize the model skill. The use of short-term
forecasts in dynamic management approaches (Maxwell et al.,
2015; Dunn et al., 2016; Tommasi et al., 2017b) may also
contribute to building long-term resilience (Hobday et al., 2016;
Tommasi et al., 2017a).

IMPROVING MARINE MAMMAL
DISTRIBUTION PROJECTIONS

Uncertainty in projected marine mammal distributions
ultimately reflects the integration of uncertainties in climate,
food resources and marine mammal ecology, physiology and
behavior (Cheung et al., 2016; Payne et al., 2016). Each of these
components is likely to make a significant contribution to the
combined uncertainty. The complexity of marine mammal
ecology, physiology and behavior (see “Marine Mammal Ecology
and Climate Change”), however, suggests that marine mammal
responses to changing habitat and prey distributions may be a
dominant uncertainty source for climate change projections.
This suggests the importance of: (a) better understanding
marine mammal behavior in order to improve the ecological
and mechanistic underpinning of statistical habitat models;
and (b) continued development and application of mechanistic
population models as critical steps to increasing confidence in
marine mammal projections under climate change. Confidence
in physical climate change projections rests in large part on the
foundation of climate models on robust physical principles that
are expected to hold as climate changes (Randall et al., 2007).
Solidifying the ecological and physiological principles upon
which marine resource projections are based is equally critical
(Stock et al., 2011).

Key requirements for credible mechanistic models are
observations that provide the understanding and constraints
necessary to build and validate such models. To support
modeling efforts, research plans are needed that extend beyond
the collection and dissemination of marine mammal occurrence
and environmental correlate data, particularly where critical
management needs exist or where correlative modeling studies
are already underway. For example, improved understanding of
how prey resources drive marine mammal distribution as well as
the underlying physical and biological features that dictate prey
occurrence (Fiedler et al., 1998; Croll et al., 2005; Santora et al.,
2013; Schroeder et al., 2014) will likely lead to advances in marine
mammal distribution modeling.

Monitoring of marine mammals and their habitats has
become increasingly sophisticated, yet despite the broad

distribution of many species well outside continental shelves,
most monitoring programs are largely focused in coastal
and nearshore areas, where most anthropogenic activities are
concentrated. As a result, validating models and detecting
changes in distribution and regional abundance of many
species may be difficult. Monitoring networks are needed
that incorporate additional assets outside areas where marine
mammals are traditionally studied. Research vessel surveys allow
the collection of broad-scale data on marine mammals and their
environment, but such surveys are costly and often limited by
ship-time availability. Technologies such as passive acoustics,
satellite telemetry, remote sensing, and autonomous underwater
vehicles (AUVs) are also well-suited for collecting data onmarine
mammal occurrence and important physical and oceanographic
data and may provide cost-effective alternatives, especially in
remote areas. As such, long-term planning for data collection
and monitoring is needed, accompanied by fiscal planning
for access to appropriate platforms for gathering priority
data.

Another critical challenge in projecting marine mammal
responses to climate change is uncertainty in regional climate
and earth system projections (Hawkins and Sutton, 2009;
Frölicher et al., 2016). Improved resolution of regional climate
processes is a focal point of current climate research (Xie
et al., 2015). Refined resolution in global climate models has
allowed them to better resolve coastal processes and, in some
cases, to reduce regional model biases (Saba et al., 2016).
Dynamical downscaling offers a second means of improving
coastal process resolution (e.g., Hermann et al., 2016; Holt
et al., 2016), but the underlying global climate models are
still subject to biases that propagate through regional model
boundaries (e.g., Meier et al., 2006). Lastly, climate variability,
which present-day models suggest has limited predictability
beyond a year for all but a few regions of the ocean (Meehl
et al., 2014), will continue to contribute uncertainty to future
climate states (e.g., Deser et al., 2012). These results suggest that
some gains in the accuracy and precision of regional climate
change projections are likely, but progress will be difficult.
Future marine mammal projections at regional scales must thus
prioritize using a range of climate projections to ensure the
best possible estimate of the range of potential marine mammal
responses.

To be effective, future modeling efforts must involve
researchers from diverse disciplines, including climate science,
ecology, physical oceanography, marine mammal biology,
and marine resource management. These multidisciplinary
research efforts will be essential to identify how ongoing
marine mammal modeling studies might be refined, better
characterized to reduce the uncertainties in projections on
different time and spatial scales, and build their value in
informing pressing management decisions—both relating to
marine mammals directly as well as for other interacting
ecosystem components. Thus, marine mammal populations of
highest concern, settings where protective measures are needed
most, and the temporal and spatial scales for management
actions need to be identified. In addition, biological and climate
change modelers must provide feedback on the limits of
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modeling efforts and describe likely levels of uncertainty inmodel
outputs.

PRIORITY ACTIONS AND EXEMPLAR
SPECIES

The broad scope of the challenges identified above (“Current
Approaches for Predicting and Projecting Marine Mammal
Occurrence and Distribution”) and the limited resources
available to meet these challenges suggests initial prioritization
of species/populations that represent a high management need
and represent a high suitability to be modeled. Species that
represent high management need are: (a) depleted or currently
undergoing declines in abundance; (b) exposed to multiple (and
perhaps compounding) anthropogenic threats; or (c) occur in
high latitudes or other regions undergoing rapid change. Species
with a high modeling suitability may: (a) already have multiple
aspects of their ecology quantified; or (b) occur in ecosystems
modeled by previous or ongoing efforts. In contrast, it may be
of relatively limited value to devote resources to populations
that are abundant and increasing in number [e.g., sperm whales
(Physeter macrocephalus)] or of relatively low management
priority, or for which modeling suitability may be limited
(Figure 2).

Some marine mammal populations with limited ranges are
exhibiting slow population growth or undergoing declines in
abundance, such as the Cook Inlet beluga whale (Delphinapterus
leucas) and vaquita (Phocoena sinus) (NMFS, 2016; Jaramillo-
Legorreta et al., 2017). Note that for these species, fisheries
bycatch and other factors may be the proximal cause for the
severe depletion or extinction. However, given their highly-
limited ranges, vulnerability to climate change is heightened as
habitat and ecosystem perturbations become added stressors.
Other species or populations with limited ranges, specialized
diets, or similarly limiting ecological features may also be
particularly vulnerable to habitat perturbations or large-scale
ecological shifts. These populations, in addition to those exposed
to the effects of various human activities such as bycatch
in fisheries, underwater industrial noise, or competition for
commercially valuable fish species, are high-priority candidates
for refining forecast modeling studies. Ongoing efforts are
focused on developing approaches to identify which protected
marine vertebrates (i.e., pinnipeds, cetaceans, and turtles) are
likely to be vulnerable to climate change and the attributes that
make them vulnerable (Link et al., 2015), using an approach
similar to that used for commercial fisheries (Pecl et al., 2014;
Morrison et al., 2015; Hare et al., 2016). Such vulnerability
assessments can inform decisions regarding priorities for
assessing future impacts on marine mammals.

High-latitude marine systems are among the regions
responding most rapidly to climate change (e.g., Doney et al.,
2012; Hobday and Pecl, 2014; Thomas et al., 2016). As a result,
marine mammal populations in these regions are likely to
undergo range expansions/contractions or changes in local
abundance sooner and perhaps more profoundly than in other
regions, particularly those at lower latitudes (e.g., Laidre et al.,

FIGURE 2 | The range of increasing modeling suitability and management

need for some illustrative marine mammal populations. Species and their

relative positions are provided for illustration purposes and may not indicate an

official agency prioritization.

2008; Moore and Huntington, 2008; Gilg et al., 2012). These
changes may lead to novel species interactions (Doney et al.,
2012). Shifts in occurrence or availability of key prey species
may also be expected in these high-latitude areas (McBride
et al., 2014; Thomas et al., 2016). Ice-obligate species that use
ice as a platform for raising young (e.g., ringed seal pupping
lairs) (NOAA, 2012) or for hunting (e.g., for polar bears, Ursus
maritimus), or whose prey species are closely or directly linked
to ice [e.g., Antarctic fur seals (Arctocephalus gazella) (Forcada
et al., 2008)] may be particularly vulnerable to declines in the
extent of seasonal and multi-year ice. While some forecasting
work has already been done for polar bears, ice seals, and
walruses (Odobenus rosmarus) in the context of endangered
species determinations under the ESA (Jay et al., 2011; Regehr
et al., 2016), additional work is required to develop and refine
models for species residing or occurring seasonally in high
latitudes.

Forecast uncertainties will be less in cases where the species’
ecology is relatively well understood and plentiful occurrence and
environmental data exist than for data-poor populations. Thus,
modeling populations about which much is already known is of
particular importance because such studies may help elucidate
potential climate change sensitivities that can strategically guide
conservation and management efforts for less well observed
regions.

Given the level of effort that has been devoted to
characterizing their marine mammal populations and physical
and biological components, the California Current and Bering
Sea ecosystems are particularly important areas for such
modeling efforts (Moore, 2008; Friday et al., 2013; Redfern et al.,
2013; Dransfield et al., 2014; Becker et al., 2016). Continuation of
these studies should be encouraged because ample environmental
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and species distribution data already exist, linkages between
species occurrence and their environmental drivers have been
explored, and these systems have been extensively modeled.
Modeling studies of multiple trophic levels, species complexes,
and well-understood systems (predator-prey relationships in
particular) are a means to capitalize on interdisciplinary work
already underway, represent cost-effective ways to maximize
use of limited analytical resources, and provide opportunities
for model validation with application to other taxa. They also
help foster collaborative work with other modeling studies (e.g.,
fisheries, ecosystem) in the region studied. This will be most
effective in regions where species interactions and relations
to the physical environment are already well known. Thus,
candidates for exploratory study of species complexes might
include biogeographic provinces such as along shelf breaks, and
portions of Bering Sea, Gulf Stream, and Antarctic ecosystems.

Therefore, key candidate marine mammal populations for
future modeling studies are those particularly vulnerable to
climate change, with high management priorities, and/or for
which ecological data already exist. Among these are ice
seal species [e.g., ringed seals and bearded seals (Erignathus
barbatus)], Arctic odontocetes [beluga, narwhal (Monodon
monoceros), and killer whales (Orcinus orca)], bowhead whales,
North Pacific right whales (Eubalaena japonica), North Atlantic
right whales, and cetacean species occurring in the Bering
Sea [e.g., humpback and gray whales or California Current
ecosystems [gray, fin (Balaenoptera physalus), and blue whales];
Figure 2].

CONCLUSIONS

Climate change presents unprecedented challenges for managers
responsible for developing and implementing conservation
measures for marine mammals. As marine mammals respond
to climate change, protective measures must be developed
that are responsive to provide adequate protection, which
requires the ability to anticipate changes in occurrence,
distribution, phenology, and relative abundance of populations.
A range of models, varying in levels of complexity and
with varying informational and computational requirements,
have been developed to project climate change impacts on
marine organisms. These models can be adjusted to appropriate
temporal and spatial scales and use new and existing species-
related data (e.g., life history, distributional ecology, behavioral
responses, and population dynamics) to be more effective under
projected climate conditions. Ongoing modeling studies can be
strengthened by improving predictive capacities, increasing data

available for marine mammals and their habitats, particularly in
areas poorly-sampled in the past.

Marine resource managers and modelers need to work
together to identify priority management needs and the strengths
and weaknesses inherent in modeling studies. Agencies should
engage in long-term fiscal planning to equip scientists and
managers with tools and resources needed to increase data
collection, enhance ongoing studies, and refine current models,
particularly as they pertain to appropriate temporal and spatial
scales relevant to conservation/management actions in settings
where needs are greatest. Given the global scale and complexity of
both climate change impacts and marine mammal distributions,
multidisciplinary collaborations are necessary to develop new,
and improve existing, models to better address conservation of
living marine resources in an uncertain future.
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APPENDIX: PANEL

Case study 1. Modeling Cetacean Density
in the Pacific Ocean
Predictive habitat-based density models were developed for
11 marine mammal species or species assemblages in the
California Current Ecosystem, eastern tropical Pacific, and
central Pacific Ocean (Figure A1). Models used a generalized
additive modeling framework at ecosystem-dependent scales (2–
120 km) and extensive line-transect survey data (e.g., Ferguson
et al., 2006; Redfern et al., 2008; Forney et al., 2012; Becker
et al., 2016). This approach has enabled comparisons of modeling
framework effectiveness, evaluation of predictor variables at
differing spatial and temporal resolutions, development of
methods to characterize uncertainty in model predictions, and
model validation (Barlow et al., 2009; Becker et al., 2010, 2014;
Forney et al., 2015).

Dynamic environmental covariates included sea surface
temperature (SST), salinity (SSS) and height (SSH), chlorophyll
concentration (CHL),thermocline depth and strength, andmixed
layer depth (MLD) collected in situ during transect surveys
and sensed remotely. In addition, dynamic variables (including
SST, SSS, MLD, and SSH) from ocean models have been used
as potential predictors in habitat models (Becker et al., 2016).
Habitat predictors from ocean circulation models all served as
proxies for unmeasured underlying ecological processes linking
cetaceans to their prey, and they provide opportunities for
dynamic predictions.

Models have successfully captured variability in cetacean
density and distribution at seasonal and interannual time scales
(e.g., Figure A2, Forney et al., 2012; Becker et al., 2014, 2016),
but they only reflect historical data and the variation therein
and do not take into account current or future conditions.
Becker et al. (2012) demonstrated that advanced satellite data
and forecasts from ocean models allow “nowcasts” of marine
mammal distributions on time scales of days to weeks and
forecasts on time scales of 3–4 months. Ocean circulation models
provide robust predictive models of cetacean distributions
(Becker et al., 2016), showing promise for future predictions of
marine mammal distributions in a changing climate. However,
these models rely on proxy variables, and future forecasts
can fail if the proxy relationships change; likewise, modeling

marine mammal distribution in one area may not be readily
transferable (i.e., may perform poorly) to other locations. Future
steps require additional model validation, particularly at different
spatial resolutions and longer temporal scales.

Case Study 2. Projecting Ringed Seal
Distributions
In the context of a biological review regarding the listing of
the ringed seal as threatened or endangered under the ESA,
ringed seal distributions were projected through the twenty-first
century using a highly-simplified definition of habitat required
by the species for the critical life history functions of whelping,
nursing, and weaning pups. These functions occur in spring, a
period when the pups are highly vulnerable to predation and
hypothermia if there is insufficient snow cover for mothers to
construct and maintain lairs on top of the ice. Studies of lair
construction indicated that accumulated snow depths of at least
20 cm are required for drifts to form that are sufficiently deep
(50–65 cm) for adequate birth lairs (NOAA, 2012). Therefore,
ringed seal habitat and breeding distribution were assumed to
be those areas of the Arctic where at least 20 cm of snow depth
could be expected in the month of April. Output from global
climate models predicts that although precipitation in the Arctic
is expected to increase, much of it will fall as rain. Delayed
autumn ice formation will mean that some of the snow that does
fall will fall into open water rather than accumulating on the ice
surface. Consequently, the area with snow depths above 20 cm
in April was projected to decline under a broad range of plausible
greenhouse gas emission scenarios, with the greatest decline up to
70% by the end of the twenty-first century under one emissions
scenario (Hezel et al., 2012). This would result in a substantial
loss of ringed seal reproductive habitat.

One strength of this approach is that it is built on climate
projections that are, qualitatively at least, broadly agreed to
represent the best available science and project robust large-scale
trends in Arctic sea ice. A significant limitation of this method
for ringed seal habitat projection is that the species’ habitat has
been reduced to just two dimensions (sea ice extent and snow
accumulation), a drastic oversimplification. Another limitation
is that regional and finer scale variability may not be adequately
reflected in the coarse resolution of the global circulation models
used for the climate projections (Stock et al., 2011).
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FIGURE A1 | (Case study 1) Transect coverage for surveys conducted by SWFSC between 1986 and 2006 in three broad study areas in the eastern North Pacific.

Modified from Hamilton et al. (2009).

FIGURE A2 | (Case study 1) Model-based estimates of fin whale summer/fall density (animals/km–2 ) and distribution for six different years, 1991–2009, in the

California Current Ecosystem. Black dots show actual sighting locations during ship surveys conducted in each year. (Details provided in Becker et al., 2016).
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