21 research outputs found

    Large-scale excess HI absorption around z≈4z\approx4 galaxies detected in a background galaxy spectrum in the MUSE eXtremely Deep Field

    Full text link
    Observationally mapping the relation between galaxies and the intergalactic medium (IGM) is of key interest for studies of cosmic reionization. Diffuse hydrogen gas has typically been observed in HI Lyman-α\alpha (Lyα\alpha) absorption in the spectra of bright background quasars. However, it is important to extend these measurements to background galaxies as quasars become increasingly rare at high redshift and rarely probe closely separated sight-lines. Here we use deep integral field spectroscopy in the MUSE eXtremely Deep Field to demonstrate the measurement of the Lyα\alpha transmission at z≈4z\approx4 in absorption to a background galaxy at z=4.77z=4.77. The HI transmission is consistent with independent quasar sight-lines at similar redshifts. Exploiting the high number of spectroscopic redshifts of faint galaxies (500 between z=4.0−4.7z=4.0-4.7 within a radius of 8 arcmin) that are tracers of the density field, we show that Lyα\alpha transmission is inversely correlated with galaxy density, i.e. transparent regions in the Lyα\alpha forest mark under-dense regions at z≈4z\approx4. Due to large-scale clustering, galaxies are surrounded by excess HI absorption over the cosmic mean out to 4 cMpc/h. We also find that redshifts from the peak of the Lyα\alpha line are typically offset from the systemic redshift by +170 km/s. This work extends results from z≈2−3z\approx 2 - 3 to higher redshifts and demonstrates the power of deep integral field spectroscopy to simultaneously measure the ionization structure of the IGM and the large-scale density field in the early Universe.Comment: Submitted to MNRAS. Main text 9 pages, 9 figures. Key results in Fig 4 (Lya forest transmission in the MXDF field) and Fig 9 (transmission - galaxy distance cross-correlation

    The Role of Galaxies and AGN in Reionising the IGM - I: Keck Spectroscopy of 5 < z < 7 Galaxies in the QSO Field J1148+5251

    Get PDF
    We introduce a new method for determining the influence of galaxies and active galactic nuclei (AGN) on the physical state of the intergalactic medium (IGM) at high redshift and illustrate its potential via a first application to the field of the z=6.42z=6.42 QSO J1148+5251. By correlating the spatial positions of spectroscopically-confirmed Lyman break galaxies (LBGs) with fluctuations in the Lyman alpha forest seen in the high signal-to-noise spectrum of a background QSO, we provide a statistical measure of the typical escape fraction of Lyman continuum photons close to the end of cosmic reionisation. Here we use Keck DEIMOS spectroscopy to locate 7 colour-selected LBGs in the redshift range 5.3≲z≲6.45.3\lesssim z\lesssim 6.4 and confirm a faint z=5.701z=5.701 AGN. We then examine the spatial correlation between this sample and Lyα\alpha/Lyβ\beta transmission fluctuations in a Keck ESI spectrum of the QSO. Interpreting the statistical HI proximity effect as arising from faint galaxies clustered around the detected LBGs, we translate the observed mean Lyα\alpha transmitted flux around an average detected LBG into a constraint on the mean escape fraction ⟨fesc⟩≥0.08\langle f_{\rm esc}\rangle\geq0.08 at z≃6z\simeq6. We also report evidence of the individual transverse HI proximity effect of a z=6.177z=6.177 luminous LBG via a Lyβ\beta transmission spike and two broad Lyα\alpha transmission spikes around the z=5.701z=5.701 AGN. We discuss the possible origin of such associations which suggest that while faint galaxies are primarily driving reionisation, luminous galaxies and AGN may provide important contributions to the UV background or thermal fluctuations of the IGM at z≃6z\simeq6. Although a limited sample, our results demonstrate the potential of making progress using this method in resolving one of the most challenging aspects of the contribution of galaxies and AGN to cosmic reionisation.Comment: 21 pages, 16 figures, the version accepted in MNRA

    Ritual in a Digital Society

    No full text

    Large-scale excess H I absorption around z ≈ 4 galaxies detected in a background galaxy spectrum in the MUSE eXtremely deep field

    Get PDF
    Observationally mapping the relation between galaxies and the intergalactic medium (IGM) is of key interest for studies of cosmic reionization. Diffuse hydrogen gas has typically been observed in H I Lyman-α (Lyα) absorption in the spectra of bright background quasars. However, it is important to extend these measurements to background galaxies as quasars become increasingly rare at high redshift and rarely probe closely separated sight lines. Here, we use deep integral field spectroscopy in the MUSE eXtremely Deep Field to demonstrate the measurement of the Lyα transmission at z ≈ 4 in absorption to a background galaxy at z = 4.77. The H I transmission is consistent with independent quasar sight lines at similar redshifts. Exploiting the high number of spectroscopic redshifts of faint galaxies (500 between z = 4.0–4.7 within a radius of 8 arcmin) that are tracers of the density field, we show that Lyα transmission is inversely correlated with galaxy density, i.e. transparent regions in the Lyα forest mark underdense regions at z ≈ 4. Due to large-scale clustering, galaxies are surrounded by excess H I absorption over the cosmic mean out to 4 cMpc/h70. We also find that redshifts from the peak of the Lyα line are typically offset from the systemic redshift by +170 km s−1. This work extends results from z ≈ 2–3 to higher redshifts and demonstrates the power of deep integral field spectroscopy to simultaneously measure the ionization structure of the IGM and the large-scale density field in the early Universe.</p

    Ritual in a Digital Society

    No full text
    We live in a digital society, where life takes place at the offline-online nexus. The shift towards a continuous blending of offline and online dimensions also affects rituals. Understanding digital rituals challenges us to explore new questions, new rules, new possibilities, and new limitations regarding rituals that are shaped by digitalization. In this book, the authors address these issues by relating ritual studies to digital culture studies. The book offers different case studies in the field of digital rituals, including pilgrimage and online storytelling, digital death rituals and mourning practices, religious online education, and online memorial practices. This book is published on the occasion of the retirement of Paul Post, professor of Ritual Studies at Tilburg University from 1994 until 2019

    Large-scale excess HI absorption around z≈4z\approx4 galaxies detected in a background galaxy spectrum in the MUSE eXtremely Deep Field

    No full text
    International audienceObservationally mapping the relation between galaxies and the intergalactic medium (IGM) is of key interest for studies of cosmic reionization. Diffuse hydrogen gas has typically been observed in HI Lyman-α\alpha (Lyα\alpha) absorption in the spectra of bright background quasars. However, it is important to extend these measurements to background galaxies as quasars become increasingly rare at high redshift and rarely probe closely separated sight-lines. Here we use deep integral field spectroscopy in the MUSE eXtremely Deep Field to demonstrate the measurement of the Lyα\alpha transmission at z≈4z\approx4 in absorption to a background galaxy at z=4.77z=4.77. The HI transmission is consistent with independent quasar sight-lines at similar redshifts. Exploiting the high number of spectroscopic redshifts of faint galaxies (500 between z=4.0−4.7z=4.0-4.7 within a radius of 8 arcmin) that are tracers of the density field, we show that Lyα\alpha transmission is inversely correlated with galaxy density, i.e. transparent regions in the Lyα\alpha forest mark under-dense regions at z≈4z\approx4. Due to large-scale clustering, galaxies are surrounded by excess HI absorption over the cosmic mean out to 4 cMpc/h. We also find that redshifts from the peak of the Lyα\alpha line are typically offset from the systemic redshift by +170 km/s. This work extends results from z≈2−3z\approx 2 - 3 to higher redshifts and demonstrates the power of deep integral field spectroscopy to simultaneously measure the ionization structure of the IGM and the large-scale density field in the early Universe

    Large-scale excess HI absorption around z≈4z\approx4 galaxies detected in a background galaxy spectrum in the MUSE eXtremely Deep Field

    Get PDF
    International audienceObservationally mapping the relation between galaxies and the intergalactic medium (IGM) is of key interest for studies of cosmic reionization. Diffuse hydrogen gas has typically been observed in HI Lyman-α\alpha (Lyα\alpha) absorption in the spectra of bright background quasars. However, it is important to extend these measurements to background galaxies as quasars become increasingly rare at high redshift and rarely probe closely separated sight-lines. Here we use deep integral field spectroscopy in the MUSE eXtremely Deep Field to demonstrate the measurement of the Lyα\alpha transmission at z≈4z\approx4 in absorption to a background galaxy at z=4.77z=4.77. The HI transmission is consistent with independent quasar sight-lines at similar redshifts. Exploiting the high number of spectroscopic redshifts of faint galaxies (500 between z=4.0−4.7z=4.0-4.7 within a radius of 8 arcmin) that are tracers of the density field, we show that Lyα\alpha transmission is inversely correlated with galaxy density, i.e. transparent regions in the Lyα\alpha forest mark under-dense regions at z≈4z\approx4. Due to large-scale clustering, galaxies are surrounded by excess HI absorption over the cosmic mean out to 4 cMpc/h. We also find that redshifts from the peak of the Lyα\alpha line are typically offset from the systemic redshift by +170 km/s. This work extends results from z≈2−3z\approx 2 - 3 to higher redshifts and demonstrates the power of deep integral field spectroscopy to simultaneously measure the ionization structure of the IGM and the large-scale density field in the early Universe

    Bipolar outflows out to 10 kpc for massive galaxies at redshift z ≈ 1

    No full text
    International audienceGalactic outflows are believed to play a critical role in the evolution of galaxies by regulating their mass build-up and star formation1. Theoretical models assume bipolar shapes for the outflows that extend well into the circumgalactic medium (CGM), up to tens of kiloparsecs (kpc) perpendicular to the galaxies. They have been directly observed in the local Universe in several individual galaxies, for example, around the Milky Way and M82 (refs. 2,3). At higher redshifts, cosmological simulations of galaxy formation predict an increase in the frequency and efficiency of galactic outflows owing to the increasing star-formation activity4. Galactic outflows are usually of low gas density and low surface brightness and therefore difficult to observe in emission towards high redshifts. Here we present an ultra-deep Multi-Unit Spectroscopic Explorer (MUSE) image of the mean Mg II emission surrounding a sample of galaxies at z ≈ 1 that strongly suggests the presence of outflowing gas on physical scales of more than 10 kpc. We find a strong dependence of the detected signal on the inclination of the central galaxy, with edge-on galaxies clearly showing enhanced Mg II emission along the minor axis, whereas face-on galaxies show much weaker and more isotropic emission. We interpret these findings as supporting the idea that outflows typically have a bipolar cone geometry perpendicular to the galactic disk. We demonstrate that this CGM-scale outflow is prevalent among galaxies with stellar mass M* ≳ 109.5M⊙
    corecore