5 research outputs found

    Integrative taxonomy approach to detect spatial and temporal variability of the Mediterranean benthic communities through artificial substrate units (ASUs)

    Get PDF
    Monitoring spatial and temporal changes of marine benthic communities using standardized procedures is essential to take necessary steps towards conservation of marine ecosystems. In this study we combined Artificial Substrate Units (ASUs) for sampling of benthic communities, with integrative taxonomy approach that incorporated morphological identification of organisms and COI DNA metabarcoding, to characterize the diversity of communities at three locations across the Central Mediterranean Sea (Livorno and Palinuro, Italy; Rovinj, Croatia) in 2019 and 2020. Significant differences in the communities’ structure were observed both at large spatial scale between sampled locations, and at small spatial scale (less than ten kilometers) between sites. Moreover, significant temporal variability in species richness and structure of benthic assemblages was detected, with higher richness in 2020. Revealed variability can probably be attributed to the peculiar geomorphological, oceanographical, and ecological features of locations, but also to the influence of interplaying local chemical and physical factors and biological processes such as species settlement, competition, and migration that can act at small spatial and temporal scales. The similarity in the species composition and community structure accessed by morphological and metabarcoding approaches was low,with only 16% of the species (out of 133 species identified overall) commonly detected by both approaches. This is mostly both due to a lack of data on COI sequences of numerous benthic invertebrates in the public barcoding databases on the one hand, and difficulties in detecting small and cryptic taxa through morphological analyses on the other. This suggests that combining of two approaches is required to fully describe the biodiversity of benthic assemblages. Finally, comparison of the spatial variability of the benthic communities’ structure with two approaches at different taxonomic levels, indicated that genus and family levels give results that are consistent to those obtained by the species level. This suggests that family level might be satisfactory in monitoring the spatial-temporal variability of Mediterranean hard bottom benthic communities

    Integrative taxonomy approach to detect spatial and temporal variability of the Mediterranean benthic communities through artificial substrate units (ASUs)

    Get PDF
    Monitoring spatial and temporal changes of marine benthic communities using standardized procedures is essential to take necessary steps towards conservation of marine ecosystems. In this study we combined Artificial Substrate Units (ASUs) for sampling of benthic communities, with integrative taxonomy approach that incorporated morphological identification of organisms and COI DNA metabarcoding, to characterize the diversity of communities at three locations across the Central Mediterranean Sea (Livorno and Palinuro, Italy; Rovinj, Croatia) in 2019 and 2020. Significant differences in the communities’ structure were observed both at large spatial scale between sampled locations, and at small spatial scale (less than ten kilometers) between sites. Moreover, significant temporal variability in species richness and structure of benthic assemblages was detected, with higher richness in 2020. Revealed variability can probably be attributed to the peculiar geomorphological, oceanographical, and ecological features of locations, but also to the influence of interplaying local chemical and physical factors and biological processes such as species settlement, competition, and migration that can act at small spatial and temporal scales. The similarity in the species composition and community structure accessed by morphological and metabarcoding approaches was low, with only 16% of the species (out of 133 species identified overall) commonly detected by both approaches. This is mostly both due to a lack of data on COI sequences of numerous benthic invertebrates in the public barcoding databases on the one hand, and difficulties in detecting small and cryptic taxa through morphological analyses on the other. This suggests that combining of two approaches is required to fully describe the biodiversity of benthic assemblages. Finally, comparison of the spatial variability of the benthic communities’ structure with two approaches at different taxonomic levels, indicated that genus and family levels give results that are consistent to those obtained by the species level. This suggests that family level might be satisfactory in monitoring the spatial-temporal variability of Mediterranean hard bottom benthic communities

    Are well-studied marine biodiversity hotspots still blackspots for animal barcoding?

    Get PDF
    Marine biodiversity underpins ecosystem health and societal well-being. Preservation of biodiversity hotspots is a global challenge. Molecular tools, like DNA barcoding and metabarcoding, hold great potential for biodiversity monitoring, possibly outperforming more traditional taxonomic methods. However, metabarcoding-based biodiversity assessments are limited by the availability of sequences in barcoding reference databases; a lack thereof results in high percentages of unassigned sequences. In this study we (i) present the current status of known vs. barcoded marine species at a global scale based on online taxonomic and genetic databases; and (ii) compare the current status with data from ten years ago. Then we analyzed occurrence data of marine animal species from five Large Marine Ecosystems (LMEs) classified as biodiversity hotspots, to identify any consistent disparities in COI barcoding coverage between geographic regions and at phylum level. Barcoding coverage varied among LMEs (from 36.8% to 62.4% COI-barcoded species) and phyla (from 4.8% to 74.7% COI-barcoded species), with Porifera, Bryozoa and Platyhelminthes being highly underrepresented, compared to Chordata, Arthropoda and Mollusca. We demonstrate that although barcoded marine species increased from 9.5% to 14.2% since the last assessment in 2011, about 15,000 (corresponding to 7.8% increase) new species were described from 2011 to 2021. The next ten years will thus be crucial to enroll concrete collaborative measures and long term initiatives (e.g., Horizon 2030, Ocean Decade) to populate barcoding libraries for the marine realm.the Department of Biological, Geological and Environmental Sciences (BiGeA) of the University of Bologna (UniBo). The CoMBoMed initiative was supported by the European Marine Research Network (EUROMARINE Network), the Inter-Departmental Research Centre for Environmental Sciences (CIRSA – UniBo), the Cultural Heritage Department (DBC - UniBo, https://beniculturali.unibo.it/it), the Fondazione Flaminia and the ERANet Mar-Tera Project SEAMoBB (Solutions for sEmi-Automated Monitoring of Benthic Biodiversity).Peer reviewe

    Are well-studied marine biodiversity hotspots still blackspots for animal barcoding?

    Get PDF
    International audienceMarine biodiversity underpins ecosystem health and societal well-being. Preservation of biodiversity hotspots is a global challenge. Molecular tools, like DNA barcoding and metabarcoding, hold great potential for biodiversity monitoring, possibly outperforming more traditional taxonomic methods. However, metabarcoding-based biodiversity assessments are limited by the availability of sequences in barcoding reference databases; a lack thereof results in high percentages of unassigned sequences. In this study, we (i) present the current status of known vs. barcoded marine animal species at a global scale based on online taxonomic and genetic databases (NCBI and BOLD) and (ii) compare the current status with data from ten years ago. Then, we focused our attention on occurrence data of marine animal species from five Large Marine Ecosystems (LMEs) representing the most well studied biodiversity hotspots, to identify disparities in COI barcoding coverage between geographic regions and at phylum level. Barcoding coverage varied among LMEs (from 36.8% to 62.4% COI-barcoded species) and phyla (from 4.8% to 74.7% COI-barcoded species), with Porifera, Bryozoa and Platyhelminthes being highly underrepresented, compared to Chordata, Arthropoda and Mollusca. We demonstrate that barcoded marine species increased from 9.5% to 14.2% since the last assessment in 2011, due to new barcodes both on already described species and on newly described ones (about 15,000 new species were described from 2011 to 2021). The next ten years will thus be crucial to enroll concrete collaborative measures and long term initiatives (e.g., Horizon 2030, Ocean Decade) to boost animal barcoding libraries for the marine realm
    corecore