3,342 research outputs found

    A Bayesian Demand-Side Management Strategy for Smart Micro-Grid

    Get PDF
    In this manuscript a novel strategy for distributed and autonomous demand-side energy management among users of a low-voltage micro-grid is developed. Its derivation is based on: a) modelling the energy consumption scheduling of the shiftable loads that belong to a given user as a noncooperative two-player game of incomplete information, in which the user itself plays against an opponent collecting all the other users of the same micro-grid; b) assuming that each user is endowed with statistical information about its behavior and that of its opponent, so that it can choose actions maximising its expected utility. Numerical results evidence the efficacy of the proposed strategy when employed to manage the charging of electric vehicles in a micro-grid

    The dynamics of the β-propeller domain in Kelch protein KLHL40 changes upon nemaline myopathy-associated mutation

    Get PDF
    Evolutionarily widespread, functionally and structurally diverse and still largely unexplored, Kelch proteins, characterized by the presence of a conserved C-terminal β-propeller, are implicated in a number of diverse fundamental biological functions, including cytoskeletal arrangement, regulation of cell morphology and organization, and protein degradation. Mutations in the genes encoding for Kelch superfamily members are being discovered as the cause of several neuromuscular diseases and cancer. The E528K mutation in Kelch protein KLHL40, which regulates skeletal muscle myogenesis, has been identified as a frequent cause of severe autosomal-recessive nemaline myopathy (NM). We use all-atom molecular dynamics simulations to characterize the dynamic behaviour of the β-propeller of the wild-type protein and identify correlated motions underlying the in vivo functionality. We also modelled the NM-associated mutation and we found that it does not lead to dramatic disruption of the β-propeller architecture; yet, residue 528 is a hub in the correlated motions of the domain, and mutation-induced local structural alterations are propagated to the whole protein, affecting its dynamics and physicochemical properties, which are fundamental for in vivo interaction with partners. Our results indicate that rational design of drugs can be envisioned as a strategy for restoring the internal network of communication and resetting KLHL40 to its physiological state

    Catalytic Mechanism of Fungal Lytic Polysaccharide Monooxygenases Investigated by First-Principles Calculations

    Get PDF
    Lytic polysaccharide monooxygenases (LPMOs) are Cu-containing enzymes that facilitate the degradation of recalcitrant polysaccharides by the oxidative cleavage of glycosidic bonds. They are gaining rapidly increasing attention as key players in biomass conversion, especially for the production of second-generation biofuels. Elucidation of the detailed mechanism of the LPMO reaction is a major step toward the assessment and optimization of LPMO efficacy in industrial biotechnology, paving the way to utilization of sustainable fuel sources. Here, we used density functional theory calculations to study the reaction pathways suggested to date, exploiting a very large active-site model for a fungal AA9 LPMO and using a celloheptaose unit as a substrate mimic. We identify a copper oxyl intermediate as being responsible for H-atom abstraction from the substrate, followed by a rapid, water-assisted hydroxyl rebound, leading to substrate hydroxylation

    Kappa Index Versus CSF Oligoclonal Bands in Predicting Multiple Sclerosis and Infectious/Inflammatory CNS Disorders

    Get PDF
    Cerebrospinal fluid (CSF) kappa free light chains (KFLC) are gaining increasing interest as markers of intrathecal immunoglobulin synthesis. The main aim of this study was to assess the diagnostic accuracy (AUC) of the kappa index (CSF/serum KFLC divided by the CSF/serum albumin ratio) compared to CSF oligoclonal IgG bands (OCB) in predicting Multiple Sclerosis (MS) or a central nervous system infectious/inflammatory disorder (CNSID)

    Multigram synthesis and in vivo efficacy studies of a novel multitarget anti-Alzheimer's compound

    Get PDF
    We describe the multigram synthesis and in vivo efficacy studies of a donepezil‒huprine hybrid that has been found to display a promising in vitro multitarget profile of interest for the treatment of Alzheimer's disease (AD). Its synthesis features as the key step a novel multigram preparative chromatographic resolution of intermediate racemic huprine Y by chiral HPLC. Administration of this compound to transgenic CL4176 and CL2006 Caenorhabditis elegans strains expressing human Aβ42, here used as simplified animal models of AD, led to a significant protection from the toxicity induced by Aβ42. However, this protective effect was not accompanied, in CL2006 worms, by a reduction of amyloid deposits. Oral administration for 3 months to transgenic APPSL mice, a well-established animal model of AD, improved short-term memory, but did not alter brain levels of Aβ peptides nor cortical and hippocampal amyloid plaque load. Despite the clear protective and cognitive effects of AVCRI104P4, the lack of Aβ lowering effect in vivo might be related to its lower in vitro potency toward Aβ aggregation and formation as compared with its higher anticholinesterase activities. Further lead optimization in this series should thus focus on improving the anti-amyloid/anticholinesterase activity ratio

    Clinical validation of full HR-HPV genotyping HPV Selfy assay according to the international guidelines for HPV test requirements for cervical cancer screening on clinician-collected and self-collected samples

    Get PDF
    Background According to international guidelines, Human Papillomavirus (HPV) DNA tests represent a valid alternative to Pap Test for primary cervical cancer screening, provided that they guarantee balanced clinical sensitivity and specificity for cervical intraepithelial neoplasia grade 2 or more (CIN2+) lesions. The study aimed to assess whether HPV Selfy (Ulisse BioMed - Trieste, Italy), a full-genotyping HPV DNA test that detects and differentiates 14 high-risk HPV (HR-HPV) types, meets the criteria for primary cervical cancer screening described in the international guidelines, on clinician-collected as well as on self-collected samples. Methods For each participant woman, consecutively referring to Azienda Sanitaria Universitaria Giuliano Isontina (Trieste, Italy) and CRO-National Cancer Institute (Aviano, Italy) for the cervical cancer screening program, the following samples were tested: (a) a clinician-collected cervical specimen, analyzed with the reference test (Hybrid Capture (R) 2 test, HC2) and HPV Selfy; and (b) a self-collected vaginal sample, analyzed with HPV Selfy. Enrolled women were also asked to fulfill a questionnaire about self-sampling acceptability. As required by guidelines, a non-inferiority test was conducted to compare the clinical performance of the test under evaluation with its reference test. Results HPV Selfy clinical sensitivity and specificity resulted non-inferior to those of HC2. By analysis of a total of 889 cervical liquid-based cytology samples from a screening population, of which 98 were from women with CIN2+, HPV Selfy showed relative sensitivity and specificity for CIN2+ of 0.98 and 1.00 respectively (non-inferiority score test: P = 0.01747 and P = 0.00414, respectively); the test reached adequate intra- and inter-laboratory reproducibility. Moreover, we demonstrated that the performance of HPV Selfy on self-collected vaginal samples was non-inferior to the performance obtained on clinician-collected cervical specimen (0.92 relative sensitivity and 0.97 relative specificity). Finally, through HPV Selfy genotyping, we were able to describe HPV types prevalence in the study population. Conclusions HPV Selfy fulfills all the requirements of the international Meijer's guidelines and has been clinically validated for primary cervical cancer screening purposes. Moreover, HPV Selfy has also been validated for self-sampling according to VALHUDES guidelines. Therefore, at date, HPV Selfy is the only full-genotyping test validated both for screening purposes and for self-sampling. Trial registration ASUGI Trieste n. 16008/2018; CRO Aviano n.17149/201

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore