27 research outputs found

    On the Origin and Trigger of the Notothenioid Adaptive Radiation

    Get PDF
    Adaptive radiation is usually triggered by ecological opportunity, arising through (i) the colonization of a new habitat by its progenitor; (ii) the extinction of competitors; or (iii) the emergence of an evolutionary key innovation in the ancestral lineage. Support for the key innovation hypothesis is scarce, however, even in textbook examples of adaptive radiation. Antifreeze glycoproteins (AFGPs) have been proposed as putative key innovation for the adaptive radiation of notothenioid fishes in the ice-cold waters of Antarctica. A crucial prerequisite for this assumption is the concurrence of the notothenioid radiation with the onset of Antarctic sea ice conditions. Here, we use a fossil-calibrated multi-marker phylogeny of nothothenioid and related acanthomorph fishes to date AFGP emergence and the notothenioid radiation. All time-constraints are cross-validated to assess their reliability resulting in six powerful calibration points. We find that the notothenioid radiation began near the Oligocene-Miocene transition, which coincides with the increasing presence of Antarctic sea ice. Divergence dates of notothenioids are thus consistent with the key innovation hypothesis of AFGP. Early notothenioid divergences are furthermore congruent with vicariant speciation and the breakup of Gondwana

    Convergence of gut microbiotas in the adaptive radiations of African cichlid fishes

    Get PDF
    Ecoevolutionary dynamics of the gut microbiota at the macroscale level, that is, in across-species comparisons, are largely driven by ecological variables and host genotype. The repeated explosive radiations of African cichlid fishes in distinct lakes, following a dietary diversification in a context of reduced genetic diversity, provide a natural setup to explore convergence, divergence and repeatability in patterns of microbiota dynamics as a function of the host diet, phylogeny and environment. Here we characterized by 16S rRNA amplicon sequencing the gut microbiota of 29 cichlid species from two distinct lakes/radiations (Tanganyika and Barombi Mbo) and across a broad dietary and phylogenetic range. Within each lake, a significant deviation between a carnivorous and herbivorous lifestyle was found. Herbivore species were characterized by an increased bacterial taxonomic and functional diversity and converged in key compositional and functional community aspects. Despite a significant lake effect on the microbiota structure, this process has occurred with remarkable parallels in the two lakes. A metabolic signature most likely explains this trend, as indicated by a significant enrichment in herbivores/omnivores of bacterial taxa and functions associated with fiber degradation and detoxification of plant chemical compounds. Overall, compositional and functional aspects of the gut microbiota individually and altogether validate and predict main cichlid dietary habits, suggesting a fundamental role of gut bacteria in cichlid niche expansion and adaptation

    Primitive Duplicate Hox Clusters in the European Eel's Genome

    Get PDF
    The enigmatic life cycle and elongated body of the European eel (Anguilla anguilla L., 1758) have long motivated scientific enquiry. Recently, eel research has gained in urgency, as the population has dwindled to the point of critical endangerment. We have assembled a draft genome in order to facilitate advances in all provinces of eel biology. Here, we use the genome to investigate the eel's complement of the Hox developmental transcription factors. We show that unlike any other teleost fish, the eel retains fully populated, duplicate Hox clusters, which originated at the teleost-specific genome duplication. Using mRNA-sequencing and in situ hybridizations, we demonstrate that all copies are expressed in early embryos. Theories of vertebrate evolution predict that the retention of functional, duplicate Hox genes can give rise to additional developmental complexity, which is not immediately apparent in the adult. However, the key morphological innovation elsewhere in the eel's life history coincides with the evolutionary origin of its Hox repertoire

    A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei)

    Get PDF
    The bony-tongue fishes, Osteoglossomorpha, have been the focus of a great deal of morphological, systematic, and evolutionary study, due in part to their basal position among extant teleostean fishes. This group includes the mooneyes (Hiodontidae), knifefishes (Notopteridae), the abu (Gymnarchidae), elephantfishes (Mormyridae), arawanas and pirarucu (Osteoglossidae), and the African butterfly fish (Pantodontidae). This morphologically heterogeneous group also has a long and diverse fossil record, including taxa from all continents and both freshwater and marine deposits. The phylogenetic relationships among most extant osteoglossomorph families are widely agreed upon. However, there is still much to discover about the systematic biology of these fishes, particularly with regard to the phylogenetic affinities of several fossil taxa, within Mormyridae, and the position of Pantodon. In this paper we review the state of knowledge for osteoglossomorph fishes. We first provide an overview of the diversity of Osteoglossomorpha, and then discuss studies of the phylogeny of Osteoglossomorpha from both morphological and molecular perspectives, as well as biogeographic analyses of the group. Finally, we offer our perspectives on future needs for research on the systematic biology of Osteoglossomorpha

    Vitamin K

    No full text
    corecore