350 research outputs found
Phi-values in protein folding kinetics have energetic and structural components
Phi-values are experimental measures of how the kinetics of protein folding
is changed by single-site mutations. Phi-values measure energetic quantities,
but are often interpreted in terms of the structures of the transition state
ensemble. Here we describe a simple analytical model of the folding kinetics in
terms of the formation of protein substructures. The model shows that
Phi-values have both structural and energetic components. In addition, it
provides a natural and general interpretation of "nonclassical" Phi-values
(i.e., less than zero, or greater than one). The model reproduces the
Phi-values for 20 single-residue mutations in the alpha-helix of the protein
CI2, including several nonclassical Phi-values, in good agreement with
experiments.Comment: 15 pages, 3 figures, 1 tabl
Protein structures and optimal folding emerging from a geometrical variational principle
Novel numerical techniques, validated by an analysis of barnase and
chymotrypsin inhibitor, are used to elucidate the paramount role played by the
geometry of the protein backbone in steering the folding to the correct native
state. It is found that, irrespective of the sequence, the native state of a
protein has exceedingly large number of conformations with a given amount of
structural overlap compared to other compact artificial backbones; moreover the
conformational entropies of unrelated proteins of the same length are nearly
equal at any given stage of folding. These results are suggestive of an
extremality principle underlying protein evolution, which, in turn, is shown to
be associated with the emergence of secondary structures.Comment: Revtex, 5 pages, 5 postscript figure
Simulation, Experiment, and Evolution: Understanding Nucleation in Protein S6 Folding
In this study, we explore nucleation and the transition state ensemble of the
ribosomal protein S6 using a Monte Carlo Go model in conjunction with
restraints from experiment. The results are analyzed in the context of
extensive experimental and evolutionary data. The roles of individual residues
in the folding nucleus are identified and the order of events in the S6 folding
mechanism is explored in detail. Interpretation of our results agrees with, and
extends the utility of, experiments that shift f-values by modulating
denaturant concentration and presents strong evidence for the realism of the
mechanistic details in our Monte Carlo Go model and the structural
interpretation of experimental f-values. We also observe plasticity in the
contacts of the hydrophobic core that support the specific nucleus. For S6,
which binds to RNA and protein after folding, this plasticity may result from
the conformational flexibility required to achieve biological function. These
results present a theoretical and conceptual picture that is relevant in
understanding the mechanism of nucleation in protein folding.Comment: PNAS in pres
Conformations of Proteins in Equilibrium
We introduce a simple theoretical approach for an equilibrium study of
proteins with known native state structures. We test our approach with results
on well-studied globular proteins, Chymotrypsin Inhibitor (2ci2), Barnase and
the alpha spectrin SH3 domain and present evidence for a hierarchical onset of
order on lowering the temperature with significant organization at the local
level even at high temperatures. A further application to the folding process
of HIV-1 protease shows that the model can be reliably used to identify key
folding sites that are responsible for the development of drug resistance .Comment: 6 pages, 3 eps figure
Discrete Kinetic Models from Funneled Energy Landscape Simulations
A general method for facilitating the interpretation of computer simulations of protein folding with minimally frustrated energy landscapes is detailed and applied to a designed ankyrin repeat protein (4ANK). In the method, groups of residues are assigned to foldons and these foldons are used to map the conformational space of the protein onto a set of discrete macrobasins. The free energies of the individual macrobasins are then calculated, informing practical kinetic analysis. Two simple assumptions about the universality of the rate for downhill transitions between macrobasins and the natural local connectivity between macrobasins lead to a scheme for predicting overall folding and unfolding rates, generating chevron plots under varying thermodynamic conditions, and inferring dominant kinetic folding pathways. To illustrate the approach, free energies of macrobasins were calculated from biased simulations of a non-additive structure-based model using two structurally motivated foldon definitions at the full and half ankyrin repeat resolutions. The calculated chevrons have features consistent with those measured in stopped flow chemical denaturation experiments. The dominant inferred folding pathway has an “inside-out”, nucleation-propagation like character
An interactome-centered protein discovery approach reveals novel components involved in mitosome function and homeostasis in giardia lamblia
Protozoan parasites of the genus Giardia are highly prevalent globally, and infect a wide range of vertebrate hosts including humans, with proliferation and pathology restricted to the small intestine. This narrow ecological specialization entailed extensive structural and functional adaptations during host-parasite co-evolution. An example is the streamlined mitosomal proteome with iron-sulphur protein maturation as the only biochemical pathway clearly associated with this organelle. Here, we applied techniques in microscopy and protein biochemistry to investigate the mitosomal membrane proteome in association to mitosome homeostasis. Live cell imaging revealed a highly immobilized array of 30–40 physically distinct mitosome organelles in trophozoites. We provide direct evidence for the single giardial dynamin-related protein as a contributor to mitosomal morphogenesis and homeostasis. To overcome inherent limitations that have hitherto severely hampered the characterization of these unique organelles we applied a novel interaction-based proteome discovery strategy using forward and reverse protein co-immunoprecipitation. This allowed generation of organelle proteome data strictly in a protein-protein interaction context. We built an initial Tom40-centered outer membrane interactome by co-immunoprecipitation experiments, identifying small GTPases, factors with dual mitosome and endoplasmic reticulum (ER) distribution, as well as novel matrix proteins. Through iterative expansion of this protein-protein interaction network, we were able to i) significantly extend this interaction-based mitosomal proteome to include other membrane-associated proteins with possible roles in mitosome morphogenesis and connection to other subcellular compartments, and ii) identify novel matrix proteins which may shed light on mitosome-associated metabolic functions other than Fe-S cluster biogenesis. Functional analysis also revealed conceptual conservation of protein translocation despite the massive divergence and reduction of protein import machinery in Giardia mitosomes
Outer membrane protein folding from an energy landscape perspective
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OFMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding
- …
