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SUMMARY

Precise control of protein turnover is essential for
cellular homeostasis. The ubiquitin-proteasome sys-
tem is well established as amajor regulator of protein
degradation, but an understanding of how inherent
structural features influence the lifetimes of proteins
is lacking. We report that yeast, mouse, and human
proteins with terminal or internal intrinsically disor-
dered segments have significantly shorter half-lives
than proteins without these features. The lengths of
the disordered segments that affect protein half-life
are compatible with the structure of the proteasome.
Divergence in terminal and internal disordered seg-
ments in yeast proteins originating from gene dupli-
cation leads to significantly altered half-life. Many
paralogs that are affected by such changes partici-
pate in signaling, where altered protein half-life will
directly impact cellular processes and function.
Thus, natural variation in the length and position of
disordered segments may affect protein half-life
and could serve as an underappreciated source of
genetic variation with important phenotypic conse-
quences.

INTRODUCTION

Protein degradation is the endpoint of gene expression, and cor-

rect turnover of proteins is essential for cellular function. Indeed,

protein half-life impacts virtually all cellular processes including

the cell cycle (Pagano et al., 1995), DNA repair (Lakin and Jack-

son, 1999), apoptosis and cell survival (Rutkowski et al., 2006),

alternative splicing (Irimia et al., 2012), circadian rhythm (van

Ooijen et al., 2011), cell differentiation (Ramakrishna et al.,

2011), development (Hirata et al., 2004), and immunity (Babon

et al., 2006). Altered protein half-life can lead to abnormal devel-

opment and diseases such as cancer and neurodegeneration

(Ciechanover, 2012). For instance, artificially extending the
half-life of the Hes7 transcription factor by �8 min severely dis-

organizes embryonic development in mice (Hirata et al., 2004).

Missense mutations in succinate dehydrogenase that increase

turnover rates contribute to neuroendocrine tumors (Yang

et al., 2012).

The proteasome mediates controlled and selective degrada-

tion of most proteins in eukaryotic cells, and access to the

proteasome is key to controlling the half-life of substrates (Gold-

berg, 2003; Hershko and Ciechanover, 1998). Substrate recruit-

ment to the proteasome is primarily mediated through their

polyubiquitination by ubiquitin ligases (Komander and Rape,

2012; Ravid and Hochstrasser, 2008; Varshavsky, 2012). This

mechanism regulates the half-life of proteins, which ranges

from seconds to days (Belle et al., 2006; Kristensen et al.,

2013; Schwanhäusser et al., 2011). The large number of ubiquitin

ligases and deubiquitinating enzymes encoded in eukaryotic ge-

nomes highlights the importance of this system (Hutchins et al.,

2013; Komander et al., 2009). Although the role of ubiquitination

in delivering proteins to the proteasome is well established, it re-

mains unclear to what extent intrinsic structural features of sub-

strates influence their half-life once bound to the proteasome

and whether such features have been exploited to alter half-life

during evolution.

An important feature implicated in affecting protein half-life is

the presence of polypeptide regions that do not adopt a defined

3D structure, typically called intrinsically disordered, or unstruc-

tured regions (van der Lee et al., 2014). Disordered regions are

present in a large number of eukaryotic proteins and play key

roles in protein function along with structured domains (Babu

et al., 2012). A number of genome-scale studies have investi-

gated the relationship between the overall fraction of disordered

residues of a protein and its half-life, but these have yielded con-

tradictory results ranging from no correlation (Yen et al., 2008) to

weak correlation (Tompa et al., 2008) to a strong effect (Gsponer

et al., 2008). The reason for the inconsistencies is perhaps that

these studies investigated correlations without the guidance

provided by the biochemical mechanism by which disordered

regions might contribute to protein turnover.

In this work, we develop a theory of how disordered segments

influence protein half-life, through a systematic analysis of
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multiple data sets describing sequence, structure, expression,

evolutionary relationships, and experimental half-life measure-

ments from both unicellular and multicellular organisms. We

present evidence that proteins with a long terminal or internal

disordered segment have a significantly shorter in vivo half-life

in yeast on a genomic scale. The same relationship is found in

mouse and human. Upon gene duplication, divergence in termi-

nal and internal disordered segments leads to altered half-life of

paralogous proteins. Many affected paralogs participate in sig-

naling pathways, where altered half-life will influence signaling

outcomes. We suggest specific biochemical mechanisms by

which disordered segments may influence degradation rates,

how these changes might modulate cellular function and pheno-

type, and hownatural variation in the length and position of intrin-

sically disordered protein regionsmay contribute to the evolution

of protein half-life.

RESULTS

To investigate the relationship between the structural architec-

ture of proteins and their cellular stability, we inferred the disor-

der status of every residue in the proteomes of yeast, mouse,

and human using the DISOPRED2 (Ward et al., 2004), IUPRED

(Dosztányi et al., 2005), and PONDR VLS1 (Obradovic et al.,

2005) software. In vivo protein half-life data for yeast were ob-

tained from a study that used strains in which proteins expressed

from their endogenous promoter contained a tandem affinity pu-

rification (TAP) tag at the C terminus (Belle et al., 2006). After in-

hibition of protein synthesis, protein abundance was measured

at three time points by western blotting with TAP antibodies. Pro-

tein turnover in mouse and human cells was measured using

isotope labeling and mass spectrometry (Kristensen et al.,

2013; Schwanhäusser et al., 2011). We combined the informa-

tion on protein half-life, and other large-scale data sets, with

the position and length of disordered segments and analyzed

the data using appropriate statistical tests (3,273 proteins in

yeast, 4,502 in mouse, and 3,971 in human; Experimental Proce-

dures; Table S1A; Figure S1A).

Long N-Terminal Disordered Segments Contribute to
Short Protein Half-Life In Vivo
We first classified yeast proteins into two groups depending on

the length of the disordered termini, treating the N and C termini

separately: those with short (%30 residues) and those with long

(>30 residues) disordered tails (Figure 1A). The length cutoff was

based on recent molecular models of the proteasome (da Fon-

seca et al., 2012; Lander et al., 2012; Lasker et al., 2012) and

on in vitro biochemical studies using purified proteasomes

showing that there is a critical minimum length of �30 residues

that allows a disordered terminus of a ubiquitinated substrate

to efficiently initiate degradation (Inobe et al., 2011). Indeed,

analysis of the yeast data confirms that protein half-life does

not depend linearly on the length of disordered segments (Fig-

ure S1B; Supplemental Experimental Procedures).

Proteins with a long disordered N terminus have a significantly

shorter half-life compared to proteins with a short disordered N

terminus (p = 5 3 10�6, Mann-Whitney U test, a nonparametric

test for assessing whether two samples come from the same un-
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derlying distribution [H0]; Figure 1B). The approach for

measuring half-lives in yeast involved C-terminal tagging with a

TAP tag, which is 186 amino acids long and largely structured.

Since all proteins had identical C termini due to the TAP tag,

we should see little difference in half-life between proteins with

long and short C-terminal disorder as characterized from the

original genome sequence. Indeed, these groups display similar

distributions of protein half-life (p = 0.99, Mann-Whitney U test;

Figure 1C).

In order to assess to what extent the disordered state of the N

terminus affects half-life, we performed three analyses. First, we

investigated proteins with a highly structured N terminus (>30

residues predicted to be structured) and found that they display

a longer half-life compared to proteins with a long disordered N

terminus (p = 2 3 10�7, Mann-Whitney U test; Figure 1D). Sec-

ond, we classified the proteome into three groups of roughly

equal size, based on their half-life: (1) short-lived proteins (half-

life % 30 min), (2) medium half-life proteins (31–70 min), and (3)

long-lived proteins (>70 min) (Figure S1A). The distributions of

the length of N-terminal disorder differ significantly across the

three groups in a manner consistent with the above observa-

tions: proteins with a shorter half-life tend to have longer N-ter-

minal disordered segments (p = 3 3 10�6, Kruskal-Wallis test,

which extends theMann-WhitneyU test to three ormore groups,

Figures 1E and S1F). Again, this relationship is not true for the C

terminus, because the TAP tag causes all proteins to have the

same C terminus (p = 0.2, Kruskal-Wallis test; Figures S1E and

S1F). Third, we quantified the effects of disordered segments

on half-life by comparing conditional probabilities for finding pro-

teins with and without long N-terminal disorder within specific

half-life ranges. The likelihood of finding a protein with a short

half-life among those that have long N-terminal disorder was

two times higher than the ‘‘reverse’’ probability of finding pro-

teins with long N-terminal disorder among those with short

half-life (p[short half-life given long N-terminal disorder] = 0.44;

p[long N-terminal disorder given short half-life] = 0.18; Tables

1A and S3A). This indicates that the presence of a long disor-

dered N terminus often results in short half-life but proteins

with short half-life need not always have a long N-terminal disor-

dered segment. Thus, the presence of a disordered N terminus is

linked to short half-life, but other properties also affect protein

turnover (see Discussion).

Internal Disordered Segments Also Contribute to Short
Protein Half-Life
The proteasome not only digests proteins starting from their

termini but also can cleave or initiate from disordered regions

in the middle of the chain (Fishbain et al., 2011; Liu et al.,

2003; Piwko and Jentsch, 2006; Prakash et al., 2004; Takeuchi

et al., 2007; Zhao et al., 2010). The catalytic residues for prote-

olysis are buried deep within the proteasome core particle,

accessible only through a long narrow channel, and the same

is true for the ATPase motor that drives protein substrates

through the degradation channel (da Fonseca et al., 2012;

Lander et al., 2012; Lasker et al., 2012). To reach these sites,

a disordered segment in the middle of a protein has to be longer

than a segment at a protein terminus (Fishbain et al., 2011).

Therefore, to investigate whether the presence of internal
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Figure 1. The Effects of Terminal Disor-

dered Segments on Protein Half-Life

(A) A total of 3,273 yeast proteins were grouped

based on the length of the disordered segment at

the N terminus. Long (dark red) and short (light red)

terminal disordered segments were defined as

stretches of >30 and %30 disordered residues.

(B–D) Boxplots of protein half-life distributions.

Proteins were classified based on the length of the

disordered segment at the N terminus (B) or the C

terminus (C) and the presence of N-terminal

disordered or structured segments (D, long N-ter-

minal structured regions [dark gray] were defined

as >30 structured residues).

(E) Boxplots of the distributions of N-terminal dis-

order length for different half-life groups, indicated

with schematic exponential degradation curves

(from short half-life [dark green] to long half-life

[light green]).

Central boxplot notches mark the median and the

95% confidence interval. Colored boxes represent

the 50% of data points above (30.75) and below

(30.25) the median (30.50). Vertical lines (whis-

kers) connected to the boxes by the horizontal

dashed lines represent the largest and the smallest

nonoutlier data points. Outliers are not shown to

improve visualization. p values reported are from

Mann-Whitney U (B–D) and Kruskal-Wallis (E)

tests. p values, the number of data points (n), and

differences between the half-life medians of the

compared groups ðD~HÞ are shown to the right.

See also Figures S1 and S3 and Table S1.
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disorder influences protein half-life, we identified proteasome-

susceptible internal disordered segments as continuous

stretches of at least 40 disordered amino acids (see Discus-

sion). Proteins that contain such an internal disordered segment

have a significantly shorter half-life than proteins that do not (p =

3 3 10�29, Mann-Whitney U test; Figure 2A). This observation is

robust to our choice of cutoff used for detecting internal disor-

dered segments, but systematically varying the length cutoff re-

vealed that maximal difference in median half-life is obtained for

a value of 40 amino acids (Table S1E). Further, the relationship

is independent of N-terminal disorder, as the half-life of proteins

with internal disordered segments is significantly lower than of

those without, regardless of the length of the disordered termi-

nus (Figure 2B).
Cell Reports 8, 1–13,
To quantify the contribution of internal

disorder to protein half-life, we computed

conditional probabilities for finding pro-

teins with and without internal disordered

segments within specific half-life ranges.

The probability of observing a protein

with a short half-life among those that

contain an internal disordered segment

is high and comparable to the ‘‘reverse’’

probability of finding a protein containing

an internal disordered segment among

those with short half-life (p[short half-life

given internal disordered segment] =
0.45; p[internal disordered segment given short half-life] =

0.49; Tables 1B and S3B). This suggests that presence or

absence of an internal disordered segment is an important deter-

minant of the half-life of a protein.

Terminal and Internal Disordered Segments Have
Combined Effects on Half-Life
Interestingly, proteins withmultiple internal disordered segments

have even shorter half-lives than proteins with a single segment

(Figures 2C and S2C). This prompted us to investigate the

combinatorial effects of terminal and internal disordered seg-

ments. Indeed, proteins that have both a long terminal disor-

dered segment and an internal disordered segment tend to

have the shortest half-lives (Figure 2D). Furthermore, the
September 25, 2014 ª2014 The Authors 3



Table 1. Conditional Probabilities for Intrinsically Disordered Segments and Protein Half-Life

See the top panel of this table and Figures 1 and 2 for a description of the definitions. See also Tables S3A (for part A) and S3B (for part B).
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probability of having either a terminal or an internal disordered

segment given that a protein has a short half-life is the highest

(p[long N-terminal or internal disorder given short half-life] =

0.57; Table 1C). Consistent with this observation, we find that

the probability of having both terminal and internal disordered

segments among proteins with a long half-life is very low

(p[long N-terminal and internal disorder given long half-life] =

0.04; Table 1C). Taken together, these results suggest that disor-

dered segments are modular in their ability to affect protein half-

life and that these segments can act in a combinatorial manner to

accentuate their effects.
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The Effects of Disordered Segments on Half-Life Are
Independent of the Overall Disorder Degree
So far, we have investigated the effects of continuous stretches

of disordered residues (i.e., disordered segments) on protein

turnover. However, the fraction of disordered residues (i.e., over-

all degree of disorder), which is an estimate of the packing,

folding, and structural stability of a protein, also correlates with

half-life, although previous studies disagree on the extent of

the effect (Gsponer et al., 2008; Tompa et al., 2008; Yen et al.,

2008). Proteins with a greater overall disorder degree generally

contain longer terminal and internal disordered segments
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Figure 2. The Effects of Internal Disordered

Segments on Protein Half-Life

(A) Boxplots of protein half-life distributions for

different groups of yeast proteins that contain (dark

red) or lack (light red) an internal disordered

segment (defined as a continuous stretch of R40

disordered residues), subclassified based on

(B and D) the length of N-terminal disorder (as in

Figure 1: long, >30 residues or short, % 30 resi-

dues) and (C) the number of internal disordered

segments (from zero, top, to three or more, bot-

tom). Each protein is present in only one category

per panel. See Figure 1 for further information. See

also Figures S2 and S3 and Tables S1 and S4.
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(Figure S3A). To determine whether the effects of disordered

segments on protein turnover (Figures 1 and 2) are independent

of the overall degree of disorder, we matched proteins that have

a similar fraction of disordered residues but have varying com-

binations of disordered segments (long or short N-terminal dis-

order and/or presence or absence of internal disordered

segments; Supplemental Results; Figure S3B).

Comparison of the half-life distributions of proteins from

different classes with similar overall disorder degrees (Fig-

ure S3C) reveals similar trends as the analysis that uses all pro-

teins (Figure 2D): proteins with both long N-terminal and internal

disordered segments typically have the shortest half-lives, fol-

lowed by proteins with either long internal or long N-terminal

disordered segments. Proteins without disordered segments

typically have the longest half-lives. The effect sizes of the differ-

ences between the half-life distributions are comparable when

using all or only proteins with matched overall disorder degree

(Figure S3D, upper triangles). Furthermore, most half-life distri-

butions are significantly different, though p values are less signif-

icant due to smaller sample sizes (Figure S3D, lower triangles).
Cell Reports 8, 1–13,
These results indicate that long disor-

dered segments at the N terminus or inter-

nally are important intrinsic features that

contribute to shorter protein half-life in

living cells and that these effects are inde-

pendent of the fraction of disordered resi-

dues across the whole protein. It should,

however, be noted that this does not rule

out an additional effect of the overall disor-

der degree on half-life, i.e., among pro-

teins that do or do not have a disordered

segment, proteins with higher degrees of

overall disorder tend to have a lower

half-life compared to those with a lower

degree of disorder (see Discussion).

Disordered Segments Have Direct
Effects on Half-Life Rather than
Acting Indirectly by Embedding
Destruction Signals
Disordered segments could influence

half-life either indirectly, by embedding

short peptide motifs that serve as
destruction signals such as ubiquitination sites or docking sites

for ubiquitinating enzymes (Ravid and Hochstrasser, 2008), or

directly, by better initiating degradation by the proteasome

(Gödderz et al., 2011; Inobe et al., 2011; Peña et al., 2009; Piwko

and Jentsch, 2006; Prakash et al., 2004; Takeuchi et al., 2007;

Verhoef et al., 2009; Zhao et al., 2010). To investigate the

indirect effects, we collected data on four known destruction

signals: experimentally determined ubiquitination sites as well

as predicted KEN box motifs, destruction box motifs, and

PEST sequences. More than half (56%) of all proteins with

long terminal or internal disordered segments do not contain

any of these destruction signals in their disordered segments

that could account for the short half-life (Supplemental

Results). Consistently, half-life distributions of proteins with

and without predicted destruction signals within the disordered

regions were not significantly different (p = 0.1 for N-terminal

disorder; p = 0.2 for internal disorder; Mann-Whitney U test;

Supplemental Results). Indeed, the majority of experimentally

determined ubiquitination sites involved in degradation are in

structured rather than disordered regions (Hagai et al., 2011).
September 25, 2014 ª2014 The Authors 5
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Figure 3. The Effects of Disordered Segments on Protein Turnover in Mouse and Human

Boxplots of the distributions of half-life values in Mus musculus (A–C), and relative degradation rates in Homo sapiens (D–F), for proteins with long and

short N-terminal, C-terminal, and internal disordered segments. Note that the scale for protein half-life is in hours for mouse, rather than minutes as in

yeast. Values are reversed for the human data: proteins with a short half-life have a high relative degradation rate. See Figure 1 for further information. See

also Table S5.
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Furthermore, sequence analysis revealed that disordered

segments of proteins with short half-life lack enriched, unchar-

acterized sequence motifs that could result in rapid degrada-

tion, for example by serving as docking sites for ubiquitin ligases

(Supplemental Results). Together, these findings suggest that

disordered segments do not affect half-life primarily indirectly

by embedding destruction motifs. Rather, the general charac-

teristics of disordered segments seem to directly result in

short half-life by forming initiation sites for degradation by the

proteasome.

Disordered Segments Have Similar Effects on Protein
Turnover in Mouse and Human
Given that the ubiquitin-proteasome system and the architec-

ture of the proteasome itself are conserved from yeast to

mammals (da Fonseca et al., 2012; Lasker et al., 2012),

we hypothesized that the observed relationships may be

evolutionarily conserved. We investigated the effects of termi-

nal and internal disordered segments on protein degradation

in mouse NIH 3T3 fibroblasts (Schwanhäusser et al., 2011)

and in human THP-1 myelomonocytic leukemia cells (Kristen-

sen et al., 2013) and found similar trends: the presence of

N-terminal and internal disordered segments is linked with

significantly faster protein turnover in both mouse (shorter

half-lives) and human (higher degradation rates) (Figure 3;

Table S5). In the mouse and human studies, protein deg-

radation was monitored using isotope labeling and mass

spectrometry, so that proteins did not need to be tagged at

the either terminus (in contrast to the yeast study). Therefore,

we could assess the contribution of the disordered segment

at the C terminus and found that proteins with a long C-terminal

disordered segment display increased turnover in mouse and

human, though in mouse, the effect seems smaller than for

N-terminal disorder and is not statistically significant (Figures

3B and 3E). These results collectively suggest that the effects
6 Cell Reports 8, 1–13, September 25, 2014 ª2014 The Authors
of disordered regions on protein half-life are evolutionary

conserved.

Divergence in Disordered Segments during Evolution
Can Impact Protein Half-Life
Our observations suggest that protein turnover rates could be

tuned by divergence in terminal or internal disordered segments

during evolution (Figure 4A). To test this, we investigated protein

pairs in yeast that arose from gene duplication (i.e., paralogs)

(Experimental Procedures). Since paralogs are encoded within

the same genome, this makes it possible to compare half-lives

between evolutionarily related proteins under similar conditions.

We specifically asked whether paralogs diverged in the length of

N-terminal disorder or in the number of internal disordered seg-

ments (but are otherwise largely similar) and, if they did, whether

this corresponded to changes in their half-life. Protein half-life

data are available for both paralogs of 1,440 pairs (Table S7),

and many of these paralog pairs have diverged in the length

and number of terminal and internal disordered segments (Fig-

ures 4B and 4C, Tables S7 and S8).

We classified the pairs of paralogs into (1) those that during

evolution maintained N-terminal disorder of roughly equal length

(i.e., both proteins have a short [%30 residues] or both have a

long [>30 residues] disordered segment at the N terminus;

1,049 pairs) and (2) pairs with disordered N termini of different

length (i.e., one protein of the pair has a short and the other

has a long disordered segment; 391 pairs). Paralogous protein

pairs that diverged in the length of N-terminal disorder show

significantly larger differences in half-lives than pairs that main-

tained roughly equal N-terminal disorder (p = 9 3 10�6, Mann-

Whitney U test; Figure 4B), in a manner that agrees with the

trends reported above: the protein with the longer N-terminal

disordered segment usually has a shorter half-life than its pa-

ralog with a shorter disordered segment. More precisely, (1) pa-

ralogous proteins with similar length of terminal disorder tend to
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Figure 4. Divergence in Disordered Seg-

ments during Evolution Can Impact Protein

Half-Life

(A) Schematic depiction of how the half-life of pa-

ralogs could be altered by changes in N-terminal

and/or internal disordered segments during evolu-

tion. The dark and light green degradation curves

denote a short and long half-life. This schematic is

not intended to cover all possible scenarios for

divergence of disordered segments between pa-

ralogs.

(B) Distributions of half-life differences (DH) in pairs

of yeast paralogs, grouped according to the dif-

ference in the length of their N-terminal disordered

segments. Top: one paralog has a short and the

other paralog a long disordered N terminus (SL).

Bottom: both paralogs have short (both %30 resi-

dues; SS) or both have long (both >30 residues; LL)

disordered N termini.

(C) Distribution of half-life differences (DH) in pa-

ralog pairs, grouped according to the difference in

the number of internal disordered regions (DI). Top:

pairs where one of the two paralogs has a higher

number of internal disordered segments (DI R 1).

Bottom: pairs with identical numbers of internal

disordered segment (DI = 0).

Each paralog pair is arranged so that DL = L1 � L2
(B) and DI = I1 � I2 (C) are always positive (i.e., L1 R

L2 and I1 R I2). This order is used for the DH

calculation (that is, the half-life of the paralog with

the shortest N-terminal disorder, or the smallest

number of internal disordered segments, will be subtracted from the half-life of the other one; DH = H1 � H2). As a result, DH will be negative for pairs where an

increase in N-terminal or internal disorder coincides with a shorter half-life (Experimental Procedures). For DI = 0 (C, bottom), two DH distributions were obtained

by ordering the paralogs within a pair according to the total length of all internal disordered segments (increasing and decreasing to simulate gain and loss of

internal disorder length during evolution; Table S6A). See Figure 1 for further information. See also Figure S4 and Table S6.
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have similar half-life values (median difference in half-life is close

to zero; Figure 4B, bottom boxplot; Table S6A), and (2) the half-

life of proteins with longer N-terminal disordered regions tends to

be 14 min shorter (median) than that of their paralogous partners

(Figure 4B, top boxplot; Table S6A). The converse is also true, as

paralogous pairs with large half-life changes show a large diver-

gence in the length of N-terminal disorder (Supplemental

Results; Figure S4A). A 14 min difference in half-life between pa-

ralogs is substantial in the context of yeast biology, as this is

comparable to the time from division to budding (G1 phase) in

laboratory strains growing exponentially in rich media at 30�C,
which is 15–37 min (Di Talia et al., 2007). Thus, altered half-life

due to divergence in the length of terminal disorder could have

a significant impact on the duration for which a protein can

impart its function in a cell and thus affect cellular behavior.

Paralogous proteins that differ in the number of internal disor-

dered segments also show significantly larger changes in half-

life than pairs with the same number of internal disordered

regions (p = 1 3 10�5, Mann-Whitney U test; Figure 4C). The

half-life of proteins with more internal disordered regions tends

to be 7 min shorter (median) than that of their paralogs (Table

S6A), which again can be a considerable amount of time consid-

ering the doubling time of yeast. In paralogous pairs that have the

same number of internal disordered segments but diverged in

the total internal disorder length (i.e., the sum of all internal disor-

dered segments), the half-life of the protein with the longer total
internal disorder also tends to be shorter (median half-life differ-

ence is 5 min; Table S6A).

Analysis of conditional probability values allowed us to quan-

tify the trends (Tables 2 and S8). The majority (73%) of paralo-

gous pairs that diverged in the length of terminal or number of

internal disordered segments show a consistent change in

half-life: the paralog with the longest terminal disordered

segment or largest number of internal disordered segments

tends to have the shorter half-life (p[shorter half-life given diver-

gence of N-terminal or internal disorder] = 0.73; Table 2C). This

effect is large even if only segments at the N terminus or only in-

ternal segments are considered (p [shorter half-life given diver-

gence of N-terminal disorder] = 0.64 and p[shorter half-life

given divergence of internal disorder] = 0.58; Tables 2A and

2B). Again, the converse is also true as the probability of

observing a paralogous pair that has diverged in both terminal

and internal disorder, and in which the paralog with the longest

terminal disordered segment and most internal disordered seg-

ments has the longer half-life, is very small (p[divergence of

N-terminal and internal disorder given longer half-life] = 0.01; Ta-

ble 2C). Taken together, the results suggest that the gain or loss

of long terminal or internal disordered segments can significantly

influence the half-life of a protein upon gene duplication during

evolution. Thus evolution of intrinsic features such as disordered

segments may be an important contributor to the degradation

rate of proteins.
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Table 2. Conditional Probabilities for Intrinsically Disordered Segments and Protein Half-Life in Pairs of Paralogs

Event (E) Condition (C) Probability (Event j Condition) = P(EXC)/P(C)

A Shorter half-life divergence of N-terminal disorder PðDH<0minjNSLÞ= 252

391
= 0:64

Divergence of N-terminal disorder shorter half-life PðNSLjDH<0minÞ= 252

787
= 0:32

B Shorter half-life divergence of internal disordered segments PðDH<0minjIn/n+ xÞ= 323

561
= 0:58

Divergence of internal disordered segments shorter half-life PðIn/n+ x jDH<0minÞ= 323

799
= 0:40

C Shorter half-life divergence of N-terminal or internal

disordered segments

PðDH<0minjNSLWIn/n+ xÞ= 542

741
= 0:73

Divergence of N-terminal or internal

disordered segments

shorter half-life PðNSLWIn/n+ x jDH<0minÞ= 542

1176
= 0:46s

Shorter half-life divergence of N-terminal and internal

disordered segments

PðDH<0minjNSLXIn/n+ xÞ= 33

211
= 0:16

Divergence of N-terminal and internal

disordered segments

shorter half-life PðNSLXIn/n+ x jDH<0minÞ= 33

1176
= 0:03

Divergence of N-terminal and internal

disordered segments

longer half-life PðNSLXIn/n+ x jDH>0minÞ= 11

1013
= 0:01

See Figure 4 for a description of the definitions. NSL denotes pairs where one paralog has a short and the other paralog a long N-terminal disordered

segment. In = > n+x denotes pairs where one of the two paralogs has a higher number of internal disordered segments (DIR 1). See also Tables S8A (for

part A) and S8B (for part B).
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Functional Analysis and Literature EvidenceSupport the
Role of Disordered Segments in Governing Protein Half-
Life and Phenotype
Disordered segments that affect half-life could be important for

governing phenotypes, because precise protein turnover is

important for many cellular processes. An analysis of function

annotations of proteins with long N-terminal or internal disor-

dered segments revealed enrichment for protein kinases and

phosphoproteins and associations with regulatory and transcrip-

tion functions, as well as cell-cycle processes (Tables S1F and

S4B). Paralogs that have diverged in terminal or internal disor-

dered segments have similar functions and are additionally

involved in, for example, ATP and nucleotide binding and ubiqui-

tin conjugation activities (Table S6C). These are all functions

involved in signaling and regulation, where alteration of protein

half-life can significantly affect the duration of activity of the pro-

tein and thereby impact cellular phenotype (Legewie et al., 2008)

(see Discussion).

A literature search revealed several examples where changes

in disordered segments lead to phenotypic differences through

altered protein half-life. Stabilizing the half-life of the yeast kinase

Ime2, a positive regulator of meiosis, by deletion of an internal

disordered region results in altered sporulation efficiency (Gutt-

mann-Raviv et al., 2002). Similarly, deletion of a highly disor-

dered 47-amino-acid stretch at the N terminus of yeast Cdc6

prevents its degradation, although in this case, the deletion

also abolishes the interaction with a ubiquitin ligase complex

(Drury et al., 1997). Deletion of the first 31 residues of the human
8 Cell Reports 8, 1–13, September 25, 2014 ª2014 The Authors
nuclear receptor Nurr1 significantly reduces its degradation by

the ubiquitin-proteasome pathway and consequently leads to

increased activation as a transcription factor (Alvarez-Castelao

et al., 2013). Interestingly, the deleted region corresponds

completely to a putative disordered segment at the N terminus

and the size of the deletion could now explain the effects on

half-life. These selected examples illustrate the importance of

disordered segments for maintaining correct protein turnover.

DISCUSSION

Ubiquitination by E3 ligases has a dominant role in decidingwhen

a protein gets targeted for proteasomal degradation, but it has

remained unclear how intrinsic features affect the lifetime of a

protein and whether such features have been exploited to alter

half-life during evolution. Here, we uncovered genome-scale

principles of how intrinsically disordered segments influence pro-

tein turnover in the cell and during evolution. On a genomic scale,

in vivo, sufficiently long disordered regions at the termini or in the

middle of proteins can directly decrease half-life (Figure 5). A

large number of control calculations confirmed that the reported

trends are independent of confounding factors, such as the cut-

offs used to group the proteins, the disorder prediction method,

the statistical tests used, protein abundance and length, subcel-

lular localization,membrane proteins, and the nature of theN-ter-

minal residue (Supplemental Results). Finally, we found that

changes in the length and number of disordered segments

upon gene duplication are linkedwith altered half-life, suggesting



Figure 5. Concept Describing the General Relationship between the

Presence of Long Terminal or Internal Disordered Segments and

Protein Half-Life

Disordered segments influence protein half-life by permitting efficient initiation

of degradation by the proteasome. Ubiquitination and other factors contrib-

uting to substrate targeting to the proteasome are not depicted.
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that such variation can contribute to the tuning of half-life during

evolution.

The Structure and Composition of the Proteasome
Suggest Molecular Mechanisms to Explain the
Observations
The structure of the 19S regulatory particle (da Fonseca et al.,

2012; Lander et al., 2012; Lasker et al., 2012) provides insights

into the mechanisms by which disordered segments may in-

crease the efficiency of proteasomal degradation and affect pro-

tein half-life. The distance between the two ubiquitin receptors,

Rpn10 and Rpn13, and the ATPase unfolding channel is �70–

80 Å. The essential deubiquitinating enzyme Rpn11 sits �60 Å

from the ATPase ring. A terminal disordered segment of 30 res-

idues would comfortably span these distances and could serve

as a degradation initiation site. Similarly, 40 residues would be

enough for an internal disordered segment to reach into the

ATPase ring of the regulatory particle, even when folding back

on itself. The precise distance requirements for a disordered

segment to serve as an initiation site will depend on specific

properties of the proteasome and the geometry and binding po-

sition of the substrate. For example, at least five different sub-

strate receptors associate with the yeast proteasome, and

some of them exhibit extensive conformational flexibility (Finley,

2009). Substrate-specific aspects that affect the distances

include the state of the termini, which are frequently subject to

maturation through cleavage and trimming (Lange and Overall,

2013), and properties of the polyubiquitin tag such as the linkage
type (e.g., K48 and K11) and number of ubiquitin moieties

(Komander and Rape, 2012), and the attachment point to the

substrate (Hagai et al., 2011; Inobe et al., 2011). This could

explain why, with in vivo data for thousands of different proteins,

we do not observe a strict length cutoff for when disordered seg-

ments influence protein half-life: cutoffs of about 30 terminal and

40 internal disordered residues produce the largest differences

between the half-lives of proteins with and without disordered

segments, but shorter and longer segments also contribute to

shorter half-life (Table S1E). Thus, individual proteins are likely

to have specific length requirements of disordered segments

that depend on a variety of factors and contribute to the range

of lengths at which disordered segments decrease protein

half-life on a global scale.

The ATP-independent regulators PA28 and P200 can also

facilitate opening of the 20S proteasome entry gate and

contribute to substrate degradation (Stadtmueller and Hill,

2011). The ATPase complex p97/VCP perhaps serves as an

alternative cap that directly binds the 20S core particle as well

(Barthelme and Sauer, 2012). All these complexes may have

different requirements for disordered segments in the substrate

proteins. In fact, it has been suggested that p97/VCPmay unfold

proteins lacking disordered regions (Beskow et al., 2009).

In vitro, the 20S proteasome core particle by itself can degrade

highly disordered proteins in a process termed degradation by

default and it may also be able to do so in vivo (Tsvetkov et al.,

2008). The average distance between the entry pore and the pro-

teolytic sites in the 20S core particle is �70 Å (da Fonseca et al.,

2012; Lasker et al., 2012). An internal disordered segment of at

least 40 residues is able to span twice this distance and thus

could be cleaved by the core particle alone (Figure S2D). Thus,

proteins with disordered segments of specific length may be

processed quickly due to efficient initiation of degradation as

discussed.

The overall disorder degree of a substrate might further affect

its half-life. Upon initiation of degradation, the proteasome may

quickly degrade proteins with high overall levels of disorder,

because its ATPase subunits spend less time to unfold these

disordered proteins once they are engaged compared to pro-

teins of similar length that are structured and need to be unfolded

before they can be processed. Indeed, biochemical evidence

suggests increasingly structured and stable substrates have

higher turnover times and energy costs (Henderson et al.,

2011; Peth et al., 2013).

Disordered Segments Influence Half-Life as an Intrinsic
Feature that Can Be Modulated by Other Mechanisms
Although proteins with long terminal or internal disordered seg-

ments tend to have a short half-life, various factors can increase

or decrease the half-life of individual proteins (see also Supple-

mental Discussion). For example, the presence of a highly

structured N-terminal domain may shield proteins with internal

disordered segments from degradation (Simister et al., 2011).

Disordered proteins may also be protected by forming protein

complexes or through interactions with other proteins. For

instance, several specialized proteins have been shown to bind

to and stabilize disordered proteins (Tsvetkov et al., 2009).

Furthermore, specific low-complexity sequences or tandem
Cell Reports 8, 1–13, September 25, 2014 ª2014 The Authors 9
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repeats in the degradation initiation site can attenuate initiation

or progression of degradation, thereby affecting substrate half-

life (Sharipo et al., 1998; Tian et al., 2005; Zhang and Coffino,

2004). This is consistent with the idea that, although disordered

segments are all similar in that they lack the ability to indepen-

dently fold into a compact structure, many types of sequences

exist within this definition that have different biophysical and

conformational characteristics. For example, some disordered

sequences are relatively globular and collapsed while others

are expanded, and this is determined by the overall charge

and sequence composition of the disordered region (Mao

et al., 2013). Indeed, the proteasome has clear amino acid

sequence preferences as degradation of model substrates that

differ only in their disordered initiation regions varies over at least

an order of magnitude (Fishbain et al., 2014). The broad distribu-

tions of half-lives observed in our study support this, as they

reflect the combined properties of many possible subtypes of

disordered segments, some of which are able to efficiently

initiate degradation, while others may not.

In short, one can distinguish at least three distinct determi-

nants of protein half-life. (1) Sequence motifs and the presence

of regulatory proteins such as ubiquitin ligases contribute to

the overall half-life of a protein by determining when substrates

will be ubiquitinated and hence targeted to the proteasome. (2)

Upon recognition of the ubiquitinated substrate by the protea-

some, the presence of disordered segments of sufficient size

either at the terminus or internally may facilitate efficient degra-

dation initiation, thereby leading to lower half-life. (3) The overall

degree of disorder may contribute to a general trend in lowering

half-life by increasing the processivity of degradation upon

engagement (after recognition and initiation) by the proteasome.

Thus, our observations suggest that disordered segments influ-

ence protein half-life as an underlying factor that can be modu-

lated by other cellular mechanisms, sequence determinants

and the structural stability of the substrate.

Disordered Segments Could Influence the Dynamics
and Regulation of Signaling Pathways
Disordered regions are prominent in regulatory and signaling

proteins (Tables S1F, S4B, and S6C) (van der Lee et al., 2014).

Since divergence in disordered segments may affect protein

half-life, this could influence the response kinetics of signaling

and regulatory pathways involving such proteins (see also Sup-

plemental Discussion). In fact, among the paralogous pairs that

show the largest divergence in the length of N-terminal disorder

and half-life in yeast (Tables S6C and S7), there are several reg-

ulatory protein kinases such as MAP kinases (MKK1, MKK2,

HOG1, and STE7), serine/threonine kinases (YPK1, YPK2, and

KIN28), and cyclin-dependent kinases (PHO85 and CAK1). Pa-

ralogs that have diverged in terminal or internal disordered

segments are generally enriched in nucleotide binding, kinase

regulatory activity, and phosphoproteins. Alterations in the

degradation rate of kinases, for instance, can have significant

implications for the dynamics of signaling networks (Legewie

et al., 2008; Purvis and Lahav, 2013). Such effects have been

shown for the yeast kinase Ime2 (Guttmann-Raviv et al., 2002)

and mouse transcription factor Hes7 (Hirata et al., 2004), where

mutations in disordered segments lead to changes in protein
10 Cell Reports 8, 1–13, September 25, 2014 ª2014 The Authors
half-life, which in turn severely deregulate signaling and develop-

ment, respectively.

Our observations raise the possibility that proteins with a long

terminal disordered segment might be better presented as anti-

gens to the immune system. This is because the immunoprotea-

some, a variant of the canonical proteasome,may better process

such proteins into peptides for presentation by the major histo-

compatibility complex (MHC) molecules (Groettrup et al.,

2010). In line with this idea, it has been shown that (1) N-

extended epitopes are efficiently processed by the immunopro-

teasome and serve as better substrates for antigen presentation

(Cascio et al., 2001) and (2) the presence of a disordered region

determines the direction of degradation, which in turn deter-

mines the spectrum of generated peptides (Berko et al., 2012).

It is tempting to speculate that one could improve vaccine effi-

ciency by adding or extending terminal disordered regions to

epitope-containing proteins. Our findings also call for careful

interpretation of half-life measurements made on proteins that

are tagged at their termini using constructs with a varying degree

of structure or intrinsic disorder (e.g., GFP, TAP tag, His-tag).

Divergence in Disordered Segments Provides a Means
for Tuning Protein Half-Life during Evolution and Could
Generate Phenotypic Variation
We observed that divergence in disordered regions might influ-

ence protein half-life among paralogs. An outstanding question

is whether such changes in half-life through divergence of disor-

dered segments are under selective pressure. Natural variation

leading to alteration of disordered regions may provide a simple

means for regulatory subfunctionalization of paralogous proteins

upon gene duplication. It also suggests a mechanism for diver-

gence of half-life among orthologous proteins between species.

Thus, while it is clear that the emergence of destruction signals

such as ubiquitination sites and dedicated ubiquitin ligases

affect targeting of a protein for degradation, variation in disor-

dered segments may provide a simple evolutionary mechanism

for fine-tuning protein turnover rates.

Several genetic and molecular mechanisms may generate di-

versity in terminal or internal disordered segments. These

include repeat expansion, alternative splicing, and alternative

transcription start sites, all of which can influence the length of

terminal and/or internal disorder of protein products, thereby

potentially influencing the half-life. This idea is supported by

the observation that protein disorder is common in insertions

and deletions (Light et al., 2013). Furthermore, given that in multi-

cellular eukaryotes (1) alternative transcription start sites

commonly generate variation in N termini (Carninci et al., 2006)

and (2) alternatively spliced exons are enriched in intrinsic disor-

der (Buljan et al., 2013), it is likely that such events that generate

diversity in protein sequences in different cell types within an in-

dividual will have an effect on protein half-life. Similarly, given

that disordered regions often contain homopolymeric repeat se-

quences (Tompa, 2003), and because tandem repeats in DNA

sequences can lead to expansion or deletion of genetic material

through strand slippage during replication (Levinson and Gut-

man, 1987), it is plausible that individuals in a population harbor

genetic variants that code for proteins with altered length of

disordered segments and thus have different half-lives. Changes
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in protein turnover in turn may disturb protein abundance and

could lead to disease (Babu et al., 2011; Hirata et al., 2004;

Yang et al., 2012), especially in the case of pleiotropic, regula-

tory, or signaling proteins. Thus mechanisms that generate di-

versity in the length or number of disordered segments could

serve as a source of genetic variation that may have important

phenotypic consequences.

EXPERIMENTAL PROCEDURES

Protein Half-Life Data and Calculation of Disordered Segments

Protein half-life data and other data (Table S1A) were collected for yeast

(Saccharomyces cerevisiae), mouse, and human. Intrinsic disorder was pre-

dicted for all reviewed protein sequences of these organisms (downloaded

from UniProtKB/Swiss-Prot; http://www.uniprot.org/) using three comple-

mentary methods: DISOPRED2, IUPRED long, and PONDR VLS1. The pres-

ence and length of N-terminal, C-terminal, and internal disordered segments

were then calculated using different algorithms and integrated with the half-

life data. Proteomes were classified into groups according to the length of

disordered segments: (1) proteins with short and long disordered termini

(length cutoff 30 residues, treating the N and C termini separately) and (2) pro-

teins with and without internal disordered segments (at least 40 disordered

residues). The overall degree of disorder of a protein was calculated as the

fraction of disordered residues (number of disordered residues divided by

sequence length). The distributions of half-life values and protein disorder

were analyzed using appropriate statistical tests.

See the Supplemental Experimental Procedures for more details.

Paralog Data and Calculations

Yeastparalogpairswereobtained fromanall-against-all sequence comparison

usingBLASTClust (Altschulet al., 1990).Moredivergentparalogs fromtheyeast

whole-genome duplication event (Wolfe and Shields, 1997) were added to the

list. To calculate the differences in half-life (DH) and N-terminal disorder length

(DL) between the individual proteins in a paralog pair,DL is defined to be always

positive and obtained by subtracting theN-terminal disorder length of paralog 2

from the N-terminal disorder length of paralog 1 (DL = L1 � L2; L1 R L2). To

calculate DH, the order of paralogs in a pair is maintained, so that DH can be

positive or negative (DH=H1�H2). Thus,DH is negativewhenever the relation-

ship ‘‘longer disordered N terminus = shorter half-life’’ holds true. Similarly, the

difference in the number of internal disordered segmentsDI is defined to always

bepositive (DI = I1� I2; I1R I2), andDH is calculated accordingly. Paralog pairs

were separated into categories according to the divergence in N-terminal (pairs

thatmaintainedor that divergedN-terminal disorder) or internal disordered seg-

ments (pairs with an identical or different number of segments).

See the Supplemental Experimental Procedures for more details.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Results, Supplemental Dis-

cussion, Supplemental Experimental Procedures, four figures, and eight ta-

bles and can be found with this article online at http://dx.doi.org/10.1016/j.

celrep.2014.07.055.
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