11 research outputs found
Continuous representations of speed by striatal medium spiny neurons
The striatum is critical for controlling motor output. However, it remains unclear how striatal output neurons encode and facilitate movement. A prominent theory suggests that striatal units encode movements in bursts of activity near specific events, such as the start or end of actions. These bursts are theorized to gate or permit specific motor actions, thereby encoding and facilitating complex sequences of actions. An alternative theory has suggested that striatal neurons encode continuous changes in sensory or motor information with graded changes in firing rate. Supporting this theory, many striatal neurons exhibit such graded changes without bursting near specific actions. Here, we evaluated these two theories in the same recordings of mice (both male and female). We recorded single-unit and multiunit activity from the dorsomedial striatum of mice as they spontaneously explored an arena. We observed both types of encoding, although continuous encoding was more prevalent than bursting near movement initiation or termination. The majority of recorded units did not exhibit positive linear relationships with speed but instead exhibited nonlinear relationships that peaked at a range of locomotor speeds. Bulk calcium recordings of identified direct and indirect pathway neurons revealed similar speed tuning profiles, indicating that the heterogeneity in response profiles was not due to this genetic distinction. We conclude that continuous encoding of speed is a central component of movement encoding in the striatum
Diet-induced obesity induces transcriptomic changes in neuroimmunometabolic-related genes in the striatum and olfactory bulb
The incidence of obesity has markedly increased globally over the last several decades and is believed to be associated with the easier availability of energy-dense foods, including high-fat foods. The reinforcing hedonic properties of high-fat foods, including olfactory cues, activate reward centers in the brain, motivating eating behavior. Thus, there is a growing interest in the understanding of the genetic changes that occur in the brain that are associated with obesity and eating behavior. This growing interest has paralleled advances in genomic methods that enable transcriptomic-wide analyses. Here, we examined the transcriptomic-level differences in the olfactory bulb and striatum, regions of the brain associated with olfaction and hedonic food-seeking, respectively, in high-fat-diet (HFD)-fed obese mice. To isolate the dietary effects from obesity, we also examined transcriptomic changes in normal-chow-fed and limited-HFD-fed groups, with the latter being pair-fed with an HFD isocaloric to the consumption of the normal-chow-fed mice. Using RNA sequencing, we identified 274 differentially expressed genes (DEGs) in the striatum and 11 in the olfactory bulb of ad libitum HFD-fed mice compared to the chow-fed group, and thirty-eight DEGs in the striatum between the ad libitum HFD and limited-HFD-fed groups. The DEGs in both tissues were associated with inflammation and immune-related pathways, including oxidative stress and immune function, and with mitochondrial dysfunction and reward pathways in the striatum. These results shed light on potential obesity-associated genes in these regions of the brain
An open-source device for measuring food intake and operant behavior in rodent home-cages
Feeding is critical for survival, and disruption in the mechanisms that govern food intake underlies disorders such as obesity and anorexia nervosa. It is important to understand both food intake and food motivation to reveal mechanisms underlying feeding disorders. Operant behavioral testing can be used to measure the motivational component to feeding, but most food intake monitoring systems do not measure operant behavior. Here, we present a new solution for monitoring both food intake and motivation in rodent home-cages: the Feeding Experimentation Device version 3 (FED3). FED3 measures food intake and operant behavior in rodent home-cages, enabling longitudinal studies of feeding behavior with minimal experimenter intervention. It has a programmable output for synchronizing behavior with optogenetic stimulation or neural recordings. Finally, FED3 design files are open-source and freely available, allowing researchers to modify FED3 to suit their needs
Persistent effects of high-fat diet on physical activity and food motivation
Weight loss after diet-induced obesity persistently decreases physical activity levels, while increasing motivation to work for palatable food
Data from: Altered development of synapse structure and function in striatum caused by Parkinson's disease-linked LRRK2-G2019S mutation
Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) can cause Parkinson's disease (PD), and the most common disease-associated mutation, G2019S, increases kinase activity. Because LRRK2 expression levels rise during synaptogenesis and are highest in dorsal striatal spiny projection neurons (SPNs), we tested the hypothesis that the LRRK2–G2019S mutation would alter development of excitatory synaptic networks in dorsal striatum. To circumvent experimental confounds associated with LRRK2 overexpression, we used mice expressing LRRK2–G2019S or D2017A (kinase-dead) knockin mutations. In whole-cell recordings, G2019S SPNs exhibited a fourfold increase in sEPSC frequency compared with wild-type SPNs in postnatal day 21 mice. Such heightened neural activity was increased similarly in direct- and indirect-pathway SPNs, and action potential-dependent activity was particularly elevated. Excitatory synaptic activity in D2017A SPNs was similar to wild type, indicating a selective effect of G2019S. Acute exposure to LRRK2 kinase inhibitors normalized activity, supporting that excessive neural activity in G2019S SPNs is mediated directly and is kinase dependent. Although dendritic arborization and densities of excitatory presynaptic terminals and postsynaptic dendritic spines in G2019S SPNs were similar to wild type, G2019S SPNs displayed larger spines that were matched functionally by a shift toward larger postsynaptic response amplitudes. Acutely isolating striatum from overlying neocortex normalized sEPSC frequency in G2019S mutants, supporting that abnormal corticostriatal activity is involved. These findings indicate that the G2019S mutation imparts a gain-of-abnormal function to SPN activity and morphology during a stage of development when activity can permanently modify circuit structure and function
Stats_Matikainen Ankney _Kezunovic et al
Summary table of all statistics used. Means and n's are provided in the associated paper