246 research outputs found

    Microscopic Model for Photoinduced Magnetism in the Molecular Complex [Mo(IV)(CN)2(CNCuL)6]8+[Mo(IV)(CN)_2(CN-CuL)_6]^{8+} Perchlorate

    Full text link
    A theoretical model for understanding photomagnetism in the heptanuclear complex [Mo(IV)(CN)2(CNCuL)6]8+[Mo(IV)(CN)_2(CN-CuL)_6]^{8+} perchlorate is developed. It is a many-body model involving the active orbitals on the transition metal ions. The model is exactly solved using a valence bond approach. The ground state solution of the model is highly degenerate and is spanned by five S=0 states, nine S=1 states, five S=2 states and one S=3 state. The orbital occupancies in all these states correspond to six Cu(II)Cu(II) ions and one diamagnetic Mo(IV)Mo(IV) ion. The optically excited charge-transfer (CT) state in each spin sector occur at nearly the same excitation energy of 2.993 eV for the physically reasonable parameter values. The degeneracy of the CT states is largest in the S=3 sector and so is the transition dipole moment from the ground state to these excited states. Thus laser irradiation with light of this energy results in most intense absorption in the S=3 sector. The life-time of the S=3 excited states is also expected to be the largest as the number of states below that energy is very sparse in this spin sector when compared to other spin sectors. These twin features of our model explain the observed photomagnetism in the [Mo(IV)(CN)2(CNCuL)6]8+[Mo(IV)(CN)_2(CN-CuL)_6]^{8+} complex.Comment: 8 pages, 6 figures and 1 tabl

    Bis[tris­(ethane-1,2-diamine)nickel(II)] octa­cyanidomolybdate(IV) dihydrate

    Get PDF
    The title complex, [NiII(C2H8N2)3]2[MoIV(CN)8]·2H2O, crystallized from a mixture of ethane-1,2-diamine (en), octa­cyano­molybdate(IV), [Mo(CN)8]4−, and the transition metal ion Ni2+. In the crystal structure, the Mo polyhedron has a square-anti­prismatic shape, while the geometry around the Ni atom is distorted octa­hedral. The complex ions and water mol­ecules are linked by hydrogen bonds

    Hybrid Quantum-Classical Monte-Carlo Study of a Molecule-Based Magnet

    Full text link
    Using a Monte Carlo (MC) method, we study an effective model for the Fe(II)Fe(III) bimetallic oxalates. Within a hybrid quantum-classical MC algorithm, the Heisenberg S=2 and S=5/2S'=5/2 spins on the Fe(II) and Fe(III) sites are updated using a quantum MC loop while the Ising-like orbital angular momenta on the Fe(II) sites are updated using a single-spin classical MC flip. The effective field acting on the orbital angular momenta depends on the quantum state of the system. We find that the mean-field phase diagram for the model is surprisingly robust with respect to fluctuations. In particular, the region displaying two compensation points shifts and shrinks but remains finite.Comment: 8 pages, 7 figure

    A Kinetic Model for Photoswitching of magnetism in the High Spin Molecule [Mo(IV)(CN)2(CN-Cu(II)(tren))6](ClO4)8

    Full text link
    The heptanuclear complex [Mo(IV)(CN)2(CN-CuL)6]8+ exhibits photomagnetism. An earlier microscopic model showed that the transition dipole moments for excitation in different spin manifolds are similar in magnitude. In this paper, we attribute photomagnetism to the long lived S=3 charge transfer excited state for which there appears to be sufficient experimental evidence. We model the photomagnetism by employing a kinetic model which includes internal conversions and intersystem crossings. The key feature of the model is assumption of the existence of two kinds of S=3 states: one which has no direct pathway for internal conversion and the other characterized by slow kinetics for internal conversion to the low-energy states. The trapped S=3 state can decay via a thermally activated barrier to the other S=3 state. The experimental temperature dependence of magnetization plot is fitted using rate constants with Arrhenius dependence. The two different experimental cMT vs. T curves obtained with different irradiation times are fitted with our model. Our studies show that the photomagnetism in these systems is governed by kinetics and not due to differences in oscillator strengths for excitation of the different spin states.Comment: 17 pages including 5 figures. Submitted to Phys. Rev.

    Magnetic properties of a mixed spin-1/2 and spin-3/2 Ising model with an uniaxial and biaxial crystal-field potential

    Full text link
    Magnetic properties of a mixed spin-1/2 and spin-3/2 Ising model on honeycomb lattice are investigated within the framework of an exact star-triangle mapping transformation. The particular attention is focused on the effect of uniaxial and biaxial crystal-field potentials that basically influence the magnetic behaviour of the spin-3/2 atoms. Our results for the basic thermodynamic quantities, as well as the dynamical time-dependent autocorrelation function indicate the spin tunneling between the ±32>| \pm \frac32> and 12>| \mp \frac12> states in two different magnetically ordered phases OP1_1 and OP2_2, respectively.Comment: 20 pages, 6 figure

    Magnetic and thermal properties of 4f-3d ladder-type molecular compounds

    Full text link
    We report on the low-temperature magnetic susceptibilities and specific heats of the isostructural spin-ladder molecular complexes L2_{2}[M(opba)]_{3\cdot xDMSOy\cdot yH2_{2}O, hereafter abbreviated with L2_{2}M3_{3} (where L = La, Gd, Tb, Dy, Ho and M = Cu, Zn). The results show that the Cu containing complexes (with the exception of La2_{2}Cu3_{3}) undergo long range magnetic order at temperatures below 2 K, and that for Gd2_{2}Cu3_{3} this ordering is ferromagnetic, whereas for Tb2_{2}Cu3_{3} and Dy2_{2}Cu3_{3} it is probably antiferromagnetic. The susceptibilities and specific heats of Tb2_{2}Cu3_{3} and Dy2_{2}Cu3_{3} above TCT_{C} have been explained by means of a model taking into account nearest as well as next-nearest neighbor magnetic interactions. We show that the intraladder L--Cu interaction is the predominant one and that it is ferromagnetic for L = Gd, Tb and Dy. For the cases of Tb, Dy and Ho containing complexes, strong crystal field effects on the magnetic and thermal properties have to be taken into account. The magnetic coupling between the (ferromagnetic) ladders is found to be very weak and is probably of dipolar origin.Comment: 13 pages, 15 figures, submitted to Phys. Rev.

    Antiferromagnetic Interactions in Copper(II) µ-Oxalato Dinuclear Complexes: The Role of the Counterion

    Get PDF
    We report the preparation, crystal structure determination, magnetic properties and DFT calculations of five oxalato‐bridged dicopper(II) complexes of formula [Cu2(bpy)2(H2O)2(C2O4)](CF3SO3)2 (1), [Cu2(bpy)2(C2O4)](PF6)2 (2), [Cu2(bpy)2(C2O4)](ClO4)2 (3), [Cu2(bpy)2Cl2(C2O4)]·H2O (4) and [Cu2(bpy)2(NO2)2(C2O4)] (5) (bpy = 2,2′‐bipyridine and C2O42– = oxalate). Compounds 1, 2, 4 and 5 crystallize in the monoclinic system and 3 crystallizes in the triclinic system. The oxalate ligands in 1–5 adopt the bis‐bidentate coordination mode and the two bpy molecules act as terminal ligands. The coordination of the counterions and the surroundings of the copper(II) ions differentiate the five compounds. The four nearest neighbours of copper(II) in 1–4 are roughly in the plane of the CuC2O4Cu framework, whereas they are in an almost perpendicular plane in 5. Using the isotropic Hamiltonian H = –J S1·S2, where S1 and S2 are the spin quantum operators for Cu1 and Cu2; J is –384 cm–1 for 1, –392 cm–1 for 2 and –387 cm–1 for 3, slightly decreasing to –328 cm–1 for 4 and falling to –14 cm–1 for 5. The influence of the anions on the magnetic properties of this family of compounds is explained by the changes in the overlap of the magnetic orbitals through the oxalate bridge. DFT calculations reproduce well the experimental values of J and provide an illustration of the magnetic orbital
    corecore