72 research outputs found

    Cooperative binding of ApiAP2 transcription factors is crucial for the expression of virulence genes in Toxoplasma gondii

    Get PDF
    International audienceToxoplasma gondii virulence depends on the expression of factors packed into specific organelles such as rhoptry and microneme. Although virulence factor expression is tightly regulated, the molecular mechanisms controlling their regulation remain poorly understood. ApiAP2 are a family of conserved transcription factors (TFs) that play an important role in regulating gene expression in apicomplexan parasites. TgAP2XI-5 is able to bind to transcription-ally active promoters of genes expressed during the S/M phase of the cell cycle, such as virulence genes (rhoptries and micronemes genes). We identified proteins interacting with TgAP2XI-5 including a cell cycle-regulated ApiAP2 TF, TgAP2X-5. Using an inducible knock-down strategy and RNA-seq, we demonstrated that the level of expression of number of virulence factors transcripts is affected by the disruption of TgAP2X-5 expression. While TgAP2X-5 disruption has mild effect on parasite invasion, it leads to the strain avirulence in mice. To better understand the molecular mechanisms at stake, we investigated the binding of TgAP2XI-5 at promoters in the TgAP2X-5 mutant strain in a genome-wide assay. We show that disruption of TgAP2X-5 expression leads to defects in TgAP2XI-5 binding to multiple rhoptry gene promoters. Taken together, these data suggest a cooperative contribution of two ApiAP2 TF in the regulation of virulence genes in T. gondii

    Epigenomic Modifications Predict Active Promoters and Gene Structure in Toxoplasma gondii

    Get PDF
    Mechanisms of gene regulation are poorly understood in Apicomplexa, a phylum that encompasses deadly human pathogens like Plasmodium and Toxoplasma. Initial studies suggest that epigenetic phenomena, including histone modifications and chromatin remodeling, have a profound effect upon gene expression and expression of virulence traits. Using the model organism Toxoplasma gondii, we characterized the epigenetic organization and transcription patterns of a contiguous 1% of the T. gondii genome using custom oligonucleotide microarrays. We show that methylation and acetylation of histones H3 and H4 are landmarks of active promoters in T. gondii that allow us to deduce the position and directionality of gene promoters with >95% accuracy. These histone methylation and acetylation “activation” marks are strongly associated with gene expression. We also demonstrate that the pattern of histone H3 arginine methylation distinguishes certain promoters, illustrating the complexity of the histone modification machinery in Toxoplasma. By integrating epigenetic data, gene prediction analysis, and gene expression data from the tachyzoite stage, we illustrate feasibility of creating an epigenomic map of T. gondii tachyzoite gene expression. Further, we illustrate the utility of the epigenomic map to empirically and biologically annotate the genome and show that this approach enables identification of previously unknown genes. Thus, our epigenomics approach provides novel insights into regulation of gene expression in the Apicomplexa. In addition, with its compact genome, genetic tractability, and discrete life cycle stages, T. gondii provides an important new model to study the evolutionarily conserved components of the histone code

    Deciphering the Role of Protein Phosphatases in Apicomplexa: The Future of Innovative Therapeutics?

    Get PDF
    Parasites belonging to the Apicomplexa phylum still represent a major public health and world-wide socioeconomic burden that is greatly amplified by the spread of resistances against known therapeutic drugs. Therefore, it is essential to provide the scientific and medical communities with innovative strategies specifically targeting these organisms. In this review, we present an overview of the diversity of the phosphatome as well as the variety of functions that phosphatases display throughout the Apicomplexan parasites' life cycles. We also discuss how this diversity could be used for the design of innovative and specific new drugs/therapeutic strategies

    Characterization of a nuclear pore protein sheds light on the roles and composition of the Toxoplasma gondii nuclear pore complex

    Get PDF
    International audienceThe nuclear pore is a key structure in eukaryotes regulating nuclear-cytoplasmic transport as well as a wide range of cellular processes. Here, we report the characterization of the first Toxoplasma gondii nuclear pore protein, named TgNup302, which appears to be the orthologue of the mammalian Nup98-96 protein. We produced a conditional knock-down mutant that expresses TgNup302 under the control of an inducible tetracycline-regulated promoter. Under ATc treatment, a substantial decrease of TgNup302 protein in inducible knock-down (iKD) parasites was observed, causing a delay in parasite proliferation. Moreover, the nuclear protein TgENO2 was trapped in the cytoplasm of ATc-treated mutants, suggesting that TgNup302 is involved in nuclear transport. Fluorescence in situ hybridization revealed that TgNup302 is essential for 18S RNA export from the nucleus to the cytoplasm, while global mRNA export remains unchanged. Using an affinity tag purification combined with mass spectrometry, we identified additional components of the nuclear pore complex, including proteins potentially interacting with chromatin. Furthermore, reverse immunoprecipitation confirmed their interaction with TgNup302, and structured illuminated microscopy confirmed the NPC localization of some of the TgNup302-interacting proteins. Intriguingly, facilitates chromatin transcription complex (FACT) components were identified, suggesting the existence of an NPC-chromatin interaction in T. gondii. Identification of TgNup302-interacting proteins also provides the first glimpse at the NPC structure in Apicomplexa, suggesting a structural conservation of the NPC components between distant eukaryotes

    Two ancient membrane pores mediate mitochondrial-nucleus membrane contact sites

    Get PDF
    Coordination between nucleus and mitochondria is essential for cell survival, and thus numerous communication routes have been established between these two organelles over eukaryotic cell evolution. One route for organelle communication is via membrane contact sites, functional appositions formed by molecular tethers. We describe a novel nuclear-mitochondrial membrane contact site in the protozoan Toxoplasma gondii. We have identified specific contacts occurring at the nuclear pore and demonstrated an interaction between components of the nuclear pore and the mitochondrial protein translocon, highlighting them as molecular tethers. Genetic disruption of the nuclear pore or the TOM translocon components, TgNup503 or TgTom40, respectively, result in contact site reduction, supporting their potential involvement in this tether. TgNup503 depletion further leads to specific mitochondrial morphology and functional defects, supporting a role for nuclear-mitochondrial contacts in mediating their communication. The discovery of a contact formed through interaction between two ancient mitochondrial and nuclear complexes sets the ground for better understanding of mitochondrial-nuclear crosstalk in eukaryotes

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≄60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≀ 18 years: 69, 48, 23; 85%), older adults (≄ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P &lt; 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    Etude de la régulation transcriptionnelle des gÚnes lors du cycle érythrocytaire de Plasmodium falciparum

    No full text
    During the life cycle of Plasmodium falciparum, the events occurring during the erythrocytic cycle implies a fine control of transcriptional regulation. We examined the regulations which may be involved in key events of the parasite life cycle. We initiated the analysis of gene expression during the erythrocytic development of two clones of P. falciparum, 3D7 and F12 (non-gametocyte producer). Using a thematic DNA microarray, we identify genes bearing differential expression profiles. They may participate in the transition towards sexual differentiation. We showed that a transcription factor, PfMyb1, has a specific DNA binding activity. We tried to understand its role during the erythrocytic cycle. Culture treated with pfmyb1 dsRNA exhibited a growth inhibition. We investigated the effect of the partial loss of availability of the transcript using the thematic DNA microarray. We worked on the promoters, in order to understand factors determining gene regulation by PfMyb1.La régulation des évÚnements de prolifération et de différenciation cellulaire, lors du cycle de Plasmodium falciparum, implique un contrÎle fin de l'expression des gÚnes. La conception d'une biopuce ciblée a permis l'identification de gÚnes différentiellement exprimés lors du cycle érythrocytaire de deux clones 3D7 et F12 (ne produisant pas de gamétocytes). L'implication de plusieurs protéines dans le processus de gamétocytogénÚse a été proposée. L'étude d'un facteur de transcription, PfMyb1, a été engagée. Celui-ci est capable de lier spécifiquement des motifs ADN. Une baisse de la croissance des parasites traités par un ARN double brin spécifique du transcrit pfmyb1 a été observée. Les conséquences de l'extinction partielle de l'expression du transcrit et de la protéine PfMyb1, à son pic d'expression, sur le transcriptome des gÚnes de Plasmodium ont été étudiées. L'analyse des promoteurs, nous a permis de mieux comprendre les modalités de la régulation par ce facteur

    A coiled-coil protein is required for coordination of karyokinesis and cytokinesis in Toxoplasma gondii

    No full text
    International audienceToxoplasma gondii is a unicellular eukaryotic pathogen that belongs to the Apicomplexa phylum, which encompasses some of the deadliest pathogens of medical and veterinary importance. The centrosome is key to the organisation and coordination of the cell cycle and division of apicomplexan parasites. The T. gondii centrosome possesses a particular bipartite structure (outer and inner cores). One of the main roles of the centrosome is to ensure proper coordination of karyokinesis. However, how these 2 events are coordinated is still unknown in T. gondii, for which the centrosome components are poorly described. To gain more insights into the biology and the composition of the T. gondii centrosome, we characterised a protein that resides at the interface of the outer and inner core centrosomes. TgCep530 is a large coiled‐coil protein with an essential role in the survival of the parasite. Depletion of this protein leads to the accumulation of parasites lacking nuclei and disruption of the normal cell cycle. Lack of TgCep530 results in a discoordination between the nuclear cycle and the budding cycle that yields fully formed parasites without nuclei. TgCep530 has a crucial role in the coordination of karyokinesis and cytokinesis
    • 

    corecore