920 research outputs found

    A Direct Measurement of the Dust Extinction Curve in an Intermediate-Redshift Galaxy

    Get PDF
    We present a proof-of-concept study that dust extinction curves can be extracted from the infrared (IR), optical, ultraviolet (UV) and X-ray afterglow observations of GRBs without assuming known extinction laws. We focus on GRB 050525A (z = 0.606), for which we also present IR observations from the Spitzer Space Telescope at about 2.3 days post-burst. We construct the spectral energy distribution (SED) of the afterglow and use it to derive the dust extinction curve of the host galaxy in 7 optical/UV wavebands. By comparing our derived extinction curve to known templates, we see that the Galactic or Milky Way extinction laws are disfavored versus the Small and Large Magellanic Cloud (SMC and LMC) ones, but that we cannot rule out the presence of a LMC-like 2175 angstrom bump in our extinction curve. The dust-to-gas ratio present within the host galaxy of GRB 050525A is similar to that found in the LMC, while about 10 to 40% more dust is required if the SMC template is assumed. Our method is useful to observatories that are capable of simultaneously observing GRB afterglows in multiple wavebands from the IR to the X-ray.Comment: 9 pages, 5 figures. Accepted by ApJ. Minor changes to 2nd Paragraph of Introductio

    SweetSpot: Near-Infrared Observations of Thirteen Type Ia Supernovae from a New NOAO Survey Probing the Nearby Smooth Hubble Flow

    Full text link
    We present 13 Type Ia supernovae (SNe Ia) observed in the restframe near-infrared (NIR) from 0.02 < z < 0.09 with the WIYN High-resolution Infrared Camera (WHIRC) on the WIYN 3.5-m telescope. With only 1-3 points per light curve and a prior on the time of maximum from the spectrum used to type the object we measure an H-band dispersion of spectroscopically normal SNe Ia of 0.164 mag. These observations continue to demonstrate the improved standard brightness of SNe Ia in H-band even with limited data. Our sample includes two SNe Ia at z ~ 0.09, which represent the most distant restframe NIR H-band observations published to date. This modest sample of 13 NIR SNe Ia represent the pilot sample for "SweetSpot" - a three-year NOAO Survey program that will observe 144 SNe Ia in the smooth Hubble flow. By the end of the survey we will have measured the relative distance to a redshift of z ~ 0.05 to 1%. Nearby Type Ia supernova (SN Ia) observations such as these will test the standard nature of SNe Ia in the restframe NIR, allow insight into the nature of dust, and provide a critical anchor for future cosmological SN Ia surveys at higher redshift.Comment: 36 pages, 8 figures, Submitted to Ap

    The First Data Release from SweetSpot: 74 Supernovae in 36 Nights on WIYN+WHIRC

    Full text link
    SweetSpot is a three-year National Optical Astronomy Observatory (NOAO) Survey program to observe Type Ia supernovae (SNe Ia) in the smooth Hubble flow with the WIYN High-resolution Infrared Camera (WHIRC) on the WIYN 3.5-m telescope. We here present data from the first half of this survey, covering the 2011B-2013B NOAO semesters, and consisting of 493 calibrated images of 74 SNe Ia observed in the rest-frame near-infrared (NIR) from 0.02<z<0.090.02 < z < 0.09. Because many observed supernovae require host galaxy subtraction from templates taken in later semesters, this release contains only the 186 NIR (JHKsJHK_s) data points for the 33 SNe Ia that do not require host-galaxy subtraction. The sample includes 4 objects with coverage beginning before the epoch of B-band maximum and 27 beginning within 20 days of B-band maximum. We also provide photometric calibration between the WIYN+WHIRC and Two-Micron All Sky Survey (2MASS) systems along with light curves for 786 2MASS stars observed alongside the SNe Ia. This work is the first in a planned series of three SweetSpot Data Releases. Future releases will include the full set of images from all 3 years of the survey, including host-galaxy reference images and updated data processing and host-galaxy reference subtraction. SweetSpot will provide a well-calibrated sample that will help improve our ability to standardize distance measurements to SNe Ia, examine the intrinsic optical-NIR colors of SNe Ia at different epochs, explore nature of dust in other galaxies, and act as a stepping stone for more distant, potentially space-based surveys.Comment: Published in AJ. 10 tables. 11 figures. Lightcurve plots included as a figureset and available in source tarball. Data online at http://www.phyast.pitt.edu/~wmwv/SweetSpot/DR1_data

    Optical Spectra of 73 Stripped-Envelope Core-Collapse Supernovae

    Full text link
    We present 645 optical spectra of 73 supernovae (SNe) of Types IIb, Ib, Ic, and broad-lined Ic. All of these types are attributed to the core collapse of massive stars, with varying degrees of intact H and He envelopes before explosion. The SNe in our sample have a mean redshift = 4200 km/s. Most of these spectra were gathered at the Harvard-Smithsonian Center for Astrophysics (CfA) between 2004 and 2009. For 53 SNe, these are the first published spectra. The data coverage range from mere identification (1-3 spectra) for a few SNe to extensive series of observations (10-30 spectra) that trace the spectral evolution for others, with an average of 9 spectra per SN. For 44 SNe of the 73 SNe presented here, we have well-determined dates of maximum light to determine the phase of each spectrum. Our sample constitutes the most extensive spectral library of stripped-envelope SNe to date. We provide very early coverage (as early as 30 days before V-band max) for photospheric spectra, as well as late-time nebular coverage when the innermost regions of the SNe are visible (as late as 2 years after explosion, while for SN1993J, we have data as late as 11.6 years). This data set has homogeneous observations and reductions that allow us to study the spectroscopic diversity of these classes of stripped SNe and to compare these to SNe associated with gamma-ray bursts. We undertake these matters in follow-up papers.Comment: Published by the Astronomical Journal in May 2015. All spectra are publicly available at the CfA SN archive: http://www.cfa.harvard.edu/supernova/SNarchive.html . A companion paper on constructing SNID templates based on these spectra is by Liu & Modjaz (2014) and the resulting SNID templates are available from the NYU website: http://cosmo.nyu.edu/SNYU/spectra

    Type II Supernova Light Curves and Spectra From the CfA

    Full text link
    We present multiband photometry of 60 spectroscopically-confirmed supernovae (SN): 39 SN II/IIP, 19 IIn, one IIb and one that was originally classified as a IIn but later as a Ibn. Forty-six have only optical photometry, six have only near infrared (NIR) photometry and eight have both optical and NIR. The median redshift of the sample is 0.016. We also present 192 optical spectra for 47 of the 60 SN. All data are publicly available. There are 26 optical and two NIR light curves of SN II/IIP with redshifts z > 0.01, some of which may give rise to useful distances for cosmological applications. All photometry was obtained between 2000 and 2011 at the Fred Lawrence Whipple Observatory (FLWO), via the 1.2m and 1.3m PAIRITEL telescopes for the optical and NIR, respectively. Each SN was observed in a subset of the uUBVRIriJHKsu'UBVRIr'i'JHK_s bands. There are a total of 2932 optical and 816 NIR light curve points. Optical spectra were obtained using the FLWO 1.5m Tillinghast telescope with the FAST spectrograph and the MMT Telescope with the Blue Channel Spectrograph. Our photometry is in reasonable agreement with other samples from the literature. Comparison with Pan-STARRS shows that two-thirds of our individual star sequences have weighted-mean V offsets within ±\pm0.02 mag. In comparing our standard-system SN light curves with common Carnegie Supernova Project objects using their color terms, we found that roughly three-quarters have average differences within ±\pm0.04 mag. The data from this work and the literature will provide insight into SN II explosions, help with developing methods for photometric SN classification, and contribute to their use as cosmological distance indicators.Comment: Accepted to ApJS. TAR of light curves and star sequences here: https://www.cfa.harvard.edu/supernova/fmalcolm2017/cfa_snII_lightcurvesndstars.june2017.tar ... Spectra can be found here: https://www.cfa.harvard.edu/supernova/fmalcolm2017/cfaspec_snII.tar.gz ... Passbands and plot of spectra can be found here: https://www.cfa.harvard.edu/supernova/SNarchive.htm

    The Type Ic Hypernova SN 2003dh/GRB 030329

    Full text link
    The spectra of SN 2003dh, identified in the afterglow of GRB030329, are modeled using radiation transport codes. It is shown that SN 2003dh had a high explosion kinetic energy (4×1052\sim 4 \times 10^{52} erg in spherical symmetry), making it one of the most powerful hypernovae observed so far, and supporting the case for association between hypernovae and Gamma Ray Bursts. However, the light curve derived from fitting the spectra suggests that SN 2003dh was not as bright as SN 1998bw, ejecting only \sim 0.35\Msun of \Nifs. The spectra of SN 2003dh resemble those of SN 1998bw around maximum, but later they look more like those of the less energetic hypernova SN 1997ef. The spectra and the inferred light curve can be modeled adopting a density distribution similar to that used for SN 1998bw at v>25,000 v > 25,000\kms but more like that of SN 1997ef at lower velocities. The mass of the ejecta is \sim 8\Msun, somewhat less than in the other two hypernovae. The progenitor must have been a massive star (M \sim 35-40\Msun), as for other hypernovae. The need to combine different one-dimensional explosion models strongly indicates that SN 2003dh was an asymmetric explosion.Comment: 11 pages, 1 table and 5 figures. To appear in the Astrophysical Journal (Letters). Revised version taking referee's comments into account, minor change

    Peculiar Type II Supernovae from Blue Supergiants

    Full text link
    The vast majority of Type II supernovae (SNe) are produced by red supergiants (RSGs), but SN 1987A revealed that blue supergiants (BSGs) can produce members of this class as well, albeit with some peculiar properties. This best studied event revolutionized our understanding of SNe, and linking it to the bulk of Type II events is essential. We present here optical photometry and spectroscopy gathered for SN 2000cb, which is clearly not a standard Type II SN and yet is not a SN 1987A analog. The light curve of SN 2000cb is reminiscent of that of SN 1987A in shape, with a slow rise to a late optical peak, but on substantially different time scales. Spectroscopically, SN 2000cb resembles a normal SN II but with ejecta velocities that far exceed those measured for SN 1987A or normal SNe II, above 18000 km/s for H-alpha at early times. The red colours, high velocities, late photometric peak, and our modeling of this object all point toward a scenario involving the high-energy explosion of a small-radius star, most likely a BSG, producing 0.1 solar masses of Ni-56. Adding a similar object to the sample, SN 2005ci, we derive a rate of about 2% of the core-collapse rate for this loosely defined class of BSG explosions.Comment: Accepted to MNRAS on March 14, 201

    The First Data Release from SweetSpot: 74 Supernovae in 36 Nights on WIYN+WHIRC

    Full text link
    SweetSpot is a three-year National Optical Astronomy Observatory (NOAO) Survey program to observe Type Ia supernovae (SNe Ia) in the smooth Hubble flow with the WIYN High-resolution Infrared Camera (WHIRC) on the WIYN 3.5-m telescope. We here present data from the first half of this survey, covering the 2011B-2013B NOAO semesters, and consisting of 493 calibrated images of 74 SNe Ia observed in the rest-frame near-infrared (NIR) from 0.02<z<0.090.02 < z < 0.09. Because many observed supernovae require host galaxy subtraction from templates taken in later semesters, this release contains only the 186 NIR (JHKsJHK_s) data points for the 33 SNe Ia that do not require host-galaxy subtraction. The sample includes 4 objects with coverage beginning before the epoch of B-band maximum and 27 beginning within 20 days of B-band maximum. We also provide photometric calibration between the WIYN+WHIRC and Two-Micron All Sky Survey (2MASS) systems along with light curves for 786 2MASS stars observed alongside the SNe Ia. This work is the first in a planned series of three SweetSpot Data Releases. Future releases will include the full set of images from all 3 years of the survey, including host-galaxy reference images and updated data processing and host-galaxy reference subtraction. SweetSpot will provide a well-calibrated sample that will help improve our ability to standardize distance measurements to SNe Ia, examine the intrinsic optical-NIR colors of SNe Ia at different epochs, explore nature of dust in other galaxies, and act as a stepping stone for more distant, potentially space-based surveys.Comment: Published in AJ. 10 tables. 11 figures. Lightcurve plots included as a figureset and available in source tarball. Data online at http://www.phyast.pitt.edu/~wmwv/SweetSpot/DR1_data

    Cosmological Results from High-z Supernovae

    Full text link
    The High-z Supernova Search Team has discovered and observed 8 new supernovae in the redshift interval z=0.3-1.2. These independent observations, confirm the result of Riess et al. (1998a) and Perlmutter et al. (1999) that supernova luminosity distances imply an accelerating universe. More importantly, they extend the redshift range of consistently observed SN Ia to z~1, where the signature of cosmological effects has the opposite sign of some plausible systematic effects. Consequently, these measurements not only provide another quantitative confirmation of the importance of dark energy, but also constitute a powerful qualitative test for the cosmological origin of cosmic acceleration. We find a rate for SN Ia of 1.4+/-0.5E-04 h^3/Mpc^3/yr at a mean redshift of 0.5. We present distances and host extinctions for 230 SN Ia. These place the following constraints on cosmological quantities: if the equation of state parameter of the dark energy is w=-1, then H0 t0 = 0.96+/-0.04, and O_l - 1.4 O_m = 0.35+/-0.14. Including the constraint of a flat Universe, we find O_m = 0.28+/-0.05, independent of any large-scale structure measurements. Adopting a prior based on the 2dF redshift survey constraint on O_m and assuming a flat universe, we find that the equation of state parameter of the dark energy lies in the range -1.48-1, we obtain w<-0.73 at 95% confidence. These constraints are similar in precision and in value to recent results reported using the WMAP satellite, also in combination with the 2dF redshift survey.Comment: 50 pages, AAS LateX, 15 figures, 15 tables. Accepted for publication by Astrophysical Journa

    SN 2006bt: A Perplexing, Troublesome, and Possibly Misleading Type Ia Supernova

    Full text link
    SN 2006bt displays characteristics unlike those of any other known Type Ia supernova (SN Ia). We present optical light curves and spectra of SN 2006bt which demonstrate the peculiar nature of this object. SN 2006bt has broad, slowly declining light curves indicative of a hot, high-luminosity SN, but lacks a prominent second maximum in the i band as do low-luminosity SNe Ia. Its spectra are similar to those of low-luminosity SNe Ia, containing features that are only present in cool SN photospheres. Light-curve fitting methods suggest that SN 2006bt is reddened by a significant amount of dust; however, it occurred in the outskirts of its early-type host galaxy and has no strong Na D absorption in any of its spectra, suggesting a negligible amount of host-galaxy dust absorption. C II is possibly detected in our pre-maximum spectra, but at a much lower velocity than other elements. The progenitor was likely very old, being a member of the halo population of a galaxy that shows no signs of recent star formation. SNe Ia have been very successfully modeled as a one-parameter family, and this is fundamental to their use as cosmological distance indicators. SN 2006bt is a challenge to that picture, yet its relatively normal light curves allowed SN 2006bt to be included in cosmological analyses. We generate mock SN Ia datasets which indicate that contamination by similar objects will both increase the scatter of a SN Ia Hubble diagram and systematically bias measurements of cosmological parameters. However, spectra and rest-frame i-band light curves should provide a definitive way to identify and eliminate such objects.Comment: ApJ, accepted. 13 pages, 13 figure
    corecore