920 research outputs found
A Direct Measurement of the Dust Extinction Curve in an Intermediate-Redshift Galaxy
We present a proof-of-concept study that dust extinction curves can be
extracted from the infrared (IR), optical, ultraviolet (UV) and X-ray afterglow
observations of GRBs without assuming known extinction laws. We focus on GRB
050525A (z = 0.606), for which we also present IR observations from the Spitzer
Space Telescope at about 2.3 days post-burst. We construct the spectral energy
distribution (SED) of the afterglow and use it to derive the dust extinction
curve of the host galaxy in 7 optical/UV wavebands. By comparing our derived
extinction curve to known templates, we see that the Galactic or Milky Way
extinction laws are disfavored versus the Small and Large Magellanic Cloud (SMC
and LMC) ones, but that we cannot rule out the presence of a LMC-like 2175
angstrom bump in our extinction curve. The dust-to-gas ratio present within the
host galaxy of GRB 050525A is similar to that found in the LMC, while about 10
to 40% more dust is required if the SMC template is assumed. Our method is
useful to observatories that are capable of simultaneously observing GRB
afterglows in multiple wavebands from the IR to the X-ray.Comment: 9 pages, 5 figures. Accepted by ApJ. Minor changes to 2nd Paragraph
of Introductio
SweetSpot: Near-Infrared Observations of Thirteen Type Ia Supernovae from a New NOAO Survey Probing the Nearby Smooth Hubble Flow
We present 13 Type Ia supernovae (SNe Ia) observed in the restframe
near-infrared (NIR) from 0.02 < z < 0.09 with the WIYN High-resolution Infrared
Camera (WHIRC) on the WIYN 3.5-m telescope. With only 1-3 points per light
curve and a prior on the time of maximum from the spectrum used to type the
object we measure an H-band dispersion of spectroscopically normal SNe Ia of
0.164 mag. These observations continue to demonstrate the improved standard
brightness of SNe Ia in H-band even with limited data. Our sample includes two
SNe Ia at z ~ 0.09, which represent the most distant restframe NIR H-band
observations published to date.
This modest sample of 13 NIR SNe Ia represent the pilot sample for
"SweetSpot" - a three-year NOAO Survey program that will observe 144 SNe Ia in
the smooth Hubble flow. By the end of the survey we will have measured the
relative distance to a redshift of z ~ 0.05 to 1%. Nearby Type Ia supernova (SN
Ia) observations such as these will test the standard nature of SNe Ia in the
restframe NIR, allow insight into the nature of dust, and provide a critical
anchor for future cosmological SN Ia surveys at higher redshift.Comment: 36 pages, 8 figures, Submitted to Ap
The First Data Release from SweetSpot: 74 Supernovae in 36 Nights on WIYN+WHIRC
SweetSpot is a three-year National Optical Astronomy Observatory (NOAO)
Survey program to observe Type Ia supernovae (SNe Ia) in the smooth Hubble flow
with the WIYN High-resolution Infrared Camera (WHIRC) on the WIYN 3.5-m
telescope. We here present data from the first half of this survey, covering
the 2011B-2013B NOAO semesters, and consisting of 493 calibrated images of 74
SNe Ia observed in the rest-frame near-infrared (NIR) from .
Because many observed supernovae require host galaxy subtraction from templates
taken in later semesters, this release contains only the 186 NIR () data
points for the 33 SNe Ia that do not require host-galaxy subtraction. The
sample includes 4 objects with coverage beginning before the epoch of B-band
maximum and 27 beginning within 20 days of B-band maximum. We also provide
photometric calibration between the WIYN+WHIRC and Two-Micron All Sky Survey
(2MASS) systems along with light curves for 786 2MASS stars observed alongside
the SNe Ia. This work is the first in a planned series of three SweetSpot Data
Releases. Future releases will include the full set of images from all 3 years
of the survey, including host-galaxy reference images and updated data
processing and host-galaxy reference subtraction. SweetSpot will provide a
well-calibrated sample that will help improve our ability to standardize
distance measurements to SNe Ia, examine the intrinsic optical-NIR colors of
SNe Ia at different epochs, explore nature of dust in other galaxies, and act
as a stepping stone for more distant, potentially space-based surveys.Comment: Published in AJ. 10 tables. 11 figures. Lightcurve plots included as
a figureset and available in source tarball. Data online at
http://www.phyast.pitt.edu/~wmwv/SweetSpot/DR1_data
Optical Spectra of 73 Stripped-Envelope Core-Collapse Supernovae
We present 645 optical spectra of 73 supernovae (SNe) of Types IIb, Ib, Ic,
and broad-lined Ic. All of these types are attributed to the core collapse of
massive stars, with varying degrees of intact H and He envelopes before
explosion. The SNe in our sample have a mean redshift = 4200 km/s. Most of
these spectra were gathered at the Harvard-Smithsonian Center for Astrophysics
(CfA) between 2004 and 2009. For 53 SNe, these are the first published spectra.
The data coverage range from mere identification (1-3 spectra) for a few SNe to
extensive series of observations (10-30 spectra) that trace the spectral
evolution for others, with an average of 9 spectra per SN. For 44 SNe of the 73
SNe presented here, we have well-determined dates of maximum light to determine
the phase of each spectrum. Our sample constitutes the most extensive spectral
library of stripped-envelope SNe to date. We provide very early coverage (as
early as 30 days before V-band max) for photospheric spectra, as well as
late-time nebular coverage when the innermost regions of the SNe are visible
(as late as 2 years after explosion, while for SN1993J, we have data as late as
11.6 years). This data set has homogeneous observations and reductions that
allow us to study the spectroscopic diversity of these classes of stripped SNe
and to compare these to SNe associated with gamma-ray bursts. We undertake
these matters in follow-up papers.Comment: Published by the Astronomical Journal in May 2015. All spectra are
publicly available at the CfA SN archive:
http://www.cfa.harvard.edu/supernova/SNarchive.html . A companion paper on
constructing SNID templates based on these spectra is by Liu & Modjaz (2014)
and the resulting SNID templates are available from the NYU website:
http://cosmo.nyu.edu/SNYU/spectra
Type II Supernova Light Curves and Spectra From the CfA
We present multiband photometry of 60 spectroscopically-confirmed supernovae
(SN): 39 SN II/IIP, 19 IIn, one IIb and one that was originally classified as a
IIn but later as a Ibn. Forty-six have only optical photometry, six have only
near infrared (NIR) photometry and eight have both optical and NIR. The median
redshift of the sample is 0.016. We also present 192 optical spectra for 47 of
the 60 SN. All data are publicly available. There are 26 optical and two NIR
light curves of SN II/IIP with redshifts z > 0.01, some of which may give rise
to useful distances for cosmological applications. All photometry was obtained
between 2000 and 2011 at the Fred Lawrence Whipple Observatory (FLWO), via the
1.2m and 1.3m PAIRITEL telescopes for the optical and NIR, respectively. Each
SN was observed in a subset of the bands. There are a total
of 2932 optical and 816 NIR light curve points. Optical spectra were obtained
using the FLWO 1.5m Tillinghast telescope with the FAST spectrograph and the
MMT Telescope with the Blue Channel Spectrograph. Our photometry is in
reasonable agreement with other samples from the literature. Comparison with
Pan-STARRS shows that two-thirds of our individual star sequences have
weighted-mean V offsets within 0.02 mag. In comparing our standard-system
SN light curves with common Carnegie Supernova Project objects using their
color terms, we found that roughly three-quarters have average differences
within 0.04 mag. The data from this work and the literature will provide
insight into SN II explosions, help with developing methods for photometric SN
classification, and contribute to their use as cosmological distance
indicators.Comment: Accepted to ApJS. TAR of light curves and star sequences here:
https://www.cfa.harvard.edu/supernova/fmalcolm2017/cfa_snII_lightcurvesndstars.june2017.tar
... Spectra can be found here:
https://www.cfa.harvard.edu/supernova/fmalcolm2017/cfaspec_snII.tar.gz ...
Passbands and plot of spectra can be found here:
https://www.cfa.harvard.edu/supernova/SNarchive.htm
The Type Ic Hypernova SN 2003dh/GRB 030329
The spectra of SN 2003dh, identified in the afterglow of GRB030329, are
modeled using radiation transport codes. It is shown that SN 2003dh had a high
explosion kinetic energy ( erg in spherical symmetry),
making it one of the most powerful hypernovae observed so far, and supporting
the case for association between hypernovae and Gamma Ray Bursts. However, the
light curve derived from fitting the spectra suggests that SN 2003dh was not as
bright as SN 1998bw, ejecting only \sim 0.35\Msun of \Nifs. The spectra of SN
2003dh resemble those of SN 1998bw around maximum, but later they look more
like those of the less energetic hypernova SN 1997ef. The spectra and the
inferred light curve can be modeled adopting a density distribution similar to
that used for SN 1998bw at \kms but more like that of SN 1997ef at
lower velocities. The mass of the ejecta is \sim 8\Msun, somewhat less than
in the other two hypernovae. The progenitor must have been a massive star (M
\sim 35-40\Msun), as for other hypernovae. The need to combine different
one-dimensional explosion models strongly indicates that SN 2003dh was an
asymmetric explosion.Comment: 11 pages, 1 table and 5 figures. To appear in the Astrophysical
Journal (Letters). Revised version taking referee's comments into account,
minor change
Peculiar Type II Supernovae from Blue Supergiants
The vast majority of Type II supernovae (SNe) are produced by red supergiants
(RSGs), but SN 1987A revealed that blue supergiants (BSGs) can produce members
of this class as well, albeit with some peculiar properties. This best studied
event revolutionized our understanding of SNe, and linking it to the bulk of
Type II events is essential. We present here optical photometry and
spectroscopy gathered for SN 2000cb, which is clearly not a standard Type II SN
and yet is not a SN 1987A analog. The light curve of SN 2000cb is reminiscent
of that of SN 1987A in shape, with a slow rise to a late optical peak, but on
substantially different time scales. Spectroscopically, SN 2000cb resembles a
normal SN II but with ejecta velocities that far exceed those measured for SN
1987A or normal SNe II, above 18000 km/s for H-alpha at early times. The red
colours, high velocities, late photometric peak, and our modeling of this
object all point toward a scenario involving the high-energy explosion of a
small-radius star, most likely a BSG, producing 0.1 solar masses of Ni-56.
Adding a similar object to the sample, SN 2005ci, we derive a rate of about 2%
of the core-collapse rate for this loosely defined class of BSG explosions.Comment: Accepted to MNRAS on March 14, 201
The First Data Release from SweetSpot: 74 Supernovae in 36 Nights on WIYN+WHIRC
SweetSpot is a three-year National Optical Astronomy Observatory (NOAO)
Survey program to observe Type Ia supernovae (SNe Ia) in the smooth Hubble flow
with the WIYN High-resolution Infrared Camera (WHIRC) on the WIYN 3.5-m
telescope. We here present data from the first half of this survey, covering
the 2011B-2013B NOAO semesters, and consisting of 493 calibrated images of 74
SNe Ia observed in the rest-frame near-infrared (NIR) from .
Because many observed supernovae require host galaxy subtraction from templates
taken in later semesters, this release contains only the 186 NIR () data
points for the 33 SNe Ia that do not require host-galaxy subtraction. The
sample includes 4 objects with coverage beginning before the epoch of B-band
maximum and 27 beginning within 20 days of B-band maximum. We also provide
photometric calibration between the WIYN+WHIRC and Two-Micron All Sky Survey
(2MASS) systems along with light curves for 786 2MASS stars observed alongside
the SNe Ia. This work is the first in a planned series of three SweetSpot Data
Releases. Future releases will include the full set of images from all 3 years
of the survey, including host-galaxy reference images and updated data
processing and host-galaxy reference subtraction. SweetSpot will provide a
well-calibrated sample that will help improve our ability to standardize
distance measurements to SNe Ia, examine the intrinsic optical-NIR colors of
SNe Ia at different epochs, explore nature of dust in other galaxies, and act
as a stepping stone for more distant, potentially space-based surveys.Comment: Published in AJ. 10 tables. 11 figures. Lightcurve plots included as
a figureset and available in source tarball. Data online at
http://www.phyast.pitt.edu/~wmwv/SweetSpot/DR1_data
Cosmological Results from High-z Supernovae
The High-z Supernova Search Team has discovered and observed 8 new supernovae
in the redshift interval z=0.3-1.2. These independent observations, confirm the
result of Riess et al. (1998a) and Perlmutter et al. (1999) that supernova
luminosity distances imply an accelerating universe. More importantly, they
extend the redshift range of consistently observed SN Ia to z~1, where the
signature of cosmological effects has the opposite sign of some plausible
systematic effects. Consequently, these measurements not only provide another
quantitative confirmation of the importance of dark energy, but also constitute
a powerful qualitative test for the cosmological origin of cosmic acceleration.
We find a rate for SN Ia of 1.4+/-0.5E-04 h^3/Mpc^3/yr at a mean redshift of
0.5. We present distances and host extinctions for 230 SN Ia. These place the
following constraints on cosmological quantities: if the equation of state
parameter of the dark energy is w=-1, then H0 t0 = 0.96+/-0.04, and O_l - 1.4
O_m = 0.35+/-0.14. Including the constraint of a flat Universe, we find O_m =
0.28+/-0.05, independent of any large-scale structure measurements. Adopting a
prior based on the 2dF redshift survey constraint on O_m and assuming a flat
universe, we find that the equation of state parameter of the dark energy lies
in the range -1.48-1,
we obtain w<-0.73 at 95% confidence. These constraints are similar in precision
and in value to recent results reported using the WMAP satellite, also in
combination with the 2dF redshift survey.Comment: 50 pages, AAS LateX, 15 figures, 15 tables. Accepted for publication
by Astrophysical Journa
SN 2006bt: A Perplexing, Troublesome, and Possibly Misleading Type Ia Supernova
SN 2006bt displays characteristics unlike those of any other known Type Ia
supernova (SN Ia). We present optical light curves and spectra of SN 2006bt
which demonstrate the peculiar nature of this object. SN 2006bt has broad,
slowly declining light curves indicative of a hot, high-luminosity SN, but
lacks a prominent second maximum in the i band as do low-luminosity SNe Ia. Its
spectra are similar to those of low-luminosity SNe Ia, containing features that
are only present in cool SN photospheres. Light-curve fitting methods suggest
that SN 2006bt is reddened by a significant amount of dust; however, it
occurred in the outskirts of its early-type host galaxy and has no strong Na D
absorption in any of its spectra, suggesting a negligible amount of host-galaxy
dust absorption. C II is possibly detected in our pre-maximum spectra, but at a
much lower velocity than other elements. The progenitor was likely very old,
being a member of the halo population of a galaxy that shows no signs of recent
star formation. SNe Ia have been very successfully modeled as a one-parameter
family, and this is fundamental to their use as cosmological distance
indicators. SN 2006bt is a challenge to that picture, yet its relatively normal
light curves allowed SN 2006bt to be included in cosmological analyses. We
generate mock SN Ia datasets which indicate that contamination by similar
objects will both increase the scatter of a SN Ia Hubble diagram and
systematically bias measurements of cosmological parameters. However, spectra
and rest-frame i-band light curves should provide a definitive way to identify
and eliminate such objects.Comment: ApJ, accepted. 13 pages, 13 figure
- …
