2,484 research outputs found

    Possible modulation of dopaminergic neurotransmission function by acetyl-L-carnitine

    Get PDF
    Acetyl‐L‐Carnitine (ALC) has a putative neuroprotective effect being used in a variety of conditions. Nevertheless, the underlying molecular mechanisms, particularly regarding the induction of changes in neurotransmitter systems, are still not fully understood. We aim to contribute for the elucidation of the mechanisms by which ALC alters neurotransmitter release, using a cell line and an animal model of exposure to methamphetamine (METH). PC12 cells were incubated with several doses of ALC (0.01 to 1.0 mM) alone or in combination with METH 1.0 or 100 ”M for 24h or 72h. When combined, ALC preceded METH administration in 30 minutes. Dopamine (DA) content was determined by high performance liquid chromatography. C57BL/6J mice were used for in vivo assays to assess DA striatal binding. Mice were divided into 4 groups, according to different treatments: group 1 (control), group 2 (ALC, 100 mg/kg), group 3 (METH, 10 mg/kg) and group 4 (ALC+METH). Images were acquired in a SPECT/CT scanner (NanoSPECT/CT, Mediso, Hungary) 70 minutes after 123I‐IBZM injection. Regions of interest were drawn in the striata and in the cerebellum to determine the striatal binding ratio. Increased intracellular levels of DA were observed in PC12 cells at 24h and 72h after the administration of ALC. Cells treated with METH 100 ”M displayed decreased intracellular levels of DA. ALC prevented the METH‐induced decrease in DA concentration (p<0.0001). On the other hand, a single dose of 10 mg/kg of METH induced a decrease in striatal D2R binding ratios comparing to control group (between 20% and 30%). Interestingly, over time, ALC was able to reverse the decrease on the radiotracer binding induced by METH. The present study indicates a possible effect of ALC over METH‐induced DA release.info:eu-repo/semantics/publishedVersio

    New Converter Solution with a Compact Modular Multilevel Structure Suitable for High-Power Medium-Voltage Wind Turbines

    Get PDF
    Modern wind turbines with increasing power levels are continuously emerging. These power levels are reaching a point where excessively high currents are obtained if the traditional low-voltage wind-turbine structure is adopted. High currents lead to excessively high losses and the need for bulky and heavy conductors to carry them. A medium-voltage structure should be a more competitive alternative to be adopted in high-power wind turbines. In this paper, a new converter solution with a modular multilevel structure suitable for driving modern/future high-power medium-voltage wind turbines is proposed. This converter topology has desirable features common to modular multilevel converters such as the improved reliability at high voltage levels, and the possibility to synthesize high-power-quality staircase-shape voltages, which leads to low requirements for harmonic and dvdt\frac{dv}{dt} filters. Furthermore, the proposed converter presents reduced capacitance and inductance requirements compared to other well-established modular multilevel converter topologies, which should result in a lighter and more compact solution. The proposed solution could potentially allow for the reduction of the overall costs of the supporting structure required to withstand the weight of the wind turbine. Simulation and experimental results are presented in this paper to validate the proposed topology

    Dispatchable High-Power Wind Turbine Based on a Multilevel Converter with Modular Structure and Hybrid Energy Storage Integration

    Get PDF
    This paper presents a new multilevel converter solution with modular structure and hybrid energy-storage integration suitable to drive modern/future high-power medium-voltage wind turbines. The hybrid energy-storage integration means that part of the converter submodules are built with batteries and part of them with conventional capacitors. Since traditional wind turbines are non-dispatchable generators, the integration of an energy storage system could be beneficial in multiple ways as the wind power plant could provide stability support to the grid, improvement of the unit commitment and economic dispatch, and the power plant owner could increase his revenues in the electricity market. The capacitors of the proposed converter are responsible to transfer the power produced by the wind turbine to the grid, and the batteries are only charged/discharged with the mismatch between the power produced by the turbine and the power to be injected into the grid, considering a dispatchable operation where the power injected into the grid is different from the power generated by the turbine. The medium-voltage structure could be an interesting option to overcome problems related to high currents in modern/future high-power wind turbines resulting in more efficient, more compact and lighter solutions. Modular multilevel converters are suitable to handle medium-voltage levels and they allow for a straightforward integration of energy storage systems in a decentralized manner

    Fast DNA translocation through a solid-state nanopore

    Full text link
    We report translocation experiments on double-strand DNA through a silicon oxide nanopore. Samples containing DNA fragments with seven different lengths between 2000 to 96000 basepairs have been electrophoretically driven through a 10 nm pore. We find a power-law scaling of the translocation time versus length, with an exponent of 1.26 ±\pm 0.07. This behavior is qualitatively different from the linear behavior observed in similar experiments performed with protein pores. We address the observed nonlinear scaling in a theoretical model that describes experiments where hydrodynamic drag on the section of the polymer outside the pore is the dominant force counteracting the driving. We show that this is the case in our experiments and derive a power-law scaling with an exponent of 1.18, in excellent agreement with our data.Comment: 5 pages, 2 figures. Submitted to PR

    Al(OH)(3) facilitated synthesis of water-soluble, magnetic, radiolabelled and fluorescent hydroxyapatite nanoparticles

    Get PDF
    Magnetic and fluorescent hydroxyapatite nanoparticles were synthesised using Al(OH)3-stabilised MnFe2O4 or Fe3O4 nanoparticles as precursors. They were readily and efficiently radiolabelled with 18F. Bisphosphonate polyethylene glycol polymers were utilised to endow the nanoparticles with excellent colloidal stability in water and to incorporate cyclam for high affinity labelling with 64Cu

    Engineering tyrosine residues into hemoglobin enhances heme reduction, decreases oxidative stress and increases vascular retention of a hemoglobin based blood substitute

    Get PDF
    Hemoglobin (Hb)-based oxygen carriers (HBOC) are modified extracellular proteins, designed to replace or augment the oxygen-carrying capacity of erythrocytes. However, clinical results have generally been disappointing due to adverse side effects, in part linked to the intrinsic oxidative toxicity of Hb. Previously a redox-active tyrosine residue was engineered into the Hb ÎČ subunit (ÎČF41Y) to facilitate electron transfer between endogenous antioxidants such as ascorbate and the oxidative ferryl heme species, converting the highly oxidizing ferryl species into the less reactive ferric (met) form. We inserted different single tyrosine mutations into the α and ÎČ subunits of Hb to determine if this effect of ÎČF41Y was unique. Every mutation that was inserted within electron transfer range of the protein surface and the heme increased the rate of ferryl reduction. However, surprisingly, three of the mutations (ÎČT84Y, αL91Y and ÎČF85Y) also increased the rate of ascorbate reduction of ferric(met) Hb to ferrous(oxy) Hb. The rate enhancement was most evident at ascorbate concentrations equivalent to that found in plasma (< 100 ÎŒM), suggesting that it might be of benefit in decreasing oxidative stress in vivo. The most promising mutant (ÎČT84Y) was stable with no increase in autoxidation or heme loss. A decrease in membrane damage following Hb addition to HEK cells correlated with the ability of ÎČT84Y to maintain the protein in its oxygenated form. When PEGylated and injected into mice, ÎČT84Y was shown to have an increased vascular half time compared to wild type PEGylated Hb. ÎČT84Y represents a new class of mutations with the ability to enhance reduction of both ferryl and ferric Hb, and thus has potential to decrease adverse side effects as one component of a final HBOC product

    Measurement of the ratio of branching fractions BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma)

    Get PDF
    The ratio of branching fractions of the radiative B decays B0 -> K*0 gamma and Bs0 -> phi gamma has been measured using 0.37 fb-1 of pp collisions at a centre of mass energy of sqrt(s) = 7 TeV, collected by the LHCb experiment. The value obtained is BR(B0 -> K*0 gamma)/BR(Bs0 -> phi gamma) = 1.12 +/- 0.08 ^{+0.06}_{-0.04} ^{+0.09}_{-0.08}, where the first uncertainty is statistical, the second systematic and the third is associated to the ratio of fragmentation fractions fs/fd. Using the world average for BR(B0 -> K*0 gamma) = (4.33 +/- 0.15) x 10^{-5}, the branching fraction BR(Bs0 -> phi gamma) is measured to be (3.9 +/- 0.5) x 10^{-5}, which is the most precise measurement to date.Comment: 15 pages, 1 figure, 2 table
    • 

    corecore