We report translocation experiments on double-strand DNA through a silicon
oxide nanopore. Samples containing DNA fragments with seven different lengths
between 2000 to 96000 basepairs have been electrophoretically driven through a
10 nm pore. We find a power-law scaling of the translocation time versus
length, with an exponent of 1.26 ± 0.07. This behavior is qualitatively
different from the linear behavior observed in similar experiments performed
with protein pores. We address the observed nonlinear scaling in a theoretical
model that describes experiments where hydrodynamic drag on the section of the
polymer outside the pore is the dominant force counteracting the driving. We
show that this is the case in our experiments and derive a power-law scaling
with an exponent of 1.18, in excellent agreement with our data.Comment: 5 pages, 2 figures. Submitted to PR