15 research outputs found

    On the accuracy of the SGP4 to predict stellar occultation events using ENVISAT/GOMOS data and recommendations for the ALTIUS mission

    Get PDF
    In preparation for the operations of the ALTIUS mission, research is carried out to assess the accuracy of the SGP4 orbital propagator in predicting stellar occultation events. The quantification of the accuracy and its consequent improvement will enable reliable measurement planning and, therefore, maximize the number of measurements. To this end, predictions are made for the timing of occultations for the GOMOS instrument on-board the ENVISAT, which are then compared to actual occultation occurrences. It is found that the error is substantial but follows a trend that can be interpolated. This enables devising a method for highly accurate predictions given a sufficient number of data points. Statistically significant results for the accuracy of the propagator and a calibration method are presented. Recommendations for a measurement planning procedure of ALTIUS are formulated

    Stratospheric aerosol data records for the climate change initiative : Development, validation and application to chemistry-climate modelling

    Get PDF
    This paper presents stratospheric aerosol climate records developed in the framework of the Aerosol_cci project, one of the 14 parallel projects from the ESA Climate Change Initiative. These data records were processed from a stratospheric aerosol dataset derived from the GOMOS experiment, using an inversion algorithm optimized for aerosol retrieval, called AerGOM. They provide a suite of aerosol parameters, such as the aerosol extinction coefficient at different wavelengths in the UV-visible range.The extinction record includes the total extinction as well as separate fields for liquid sulfate aerosols and polar stratospheric clouds (PSCs). Several additional fields (PSC flag, etc.) are also provided. The resulting stratospheric aerosol dataset, which spans the whole duration of the GOMOS mission (2002-2012), was validated using different reference datasets (lidar and balloon profiles). In the present paper, the emphasis is put on the extinction records. After a thorough analysis of the original AerGOM dataset, we describe the methodology used to construct the gridded CCI-GOMOS dataset and the resulting improvements on both the AerGOM algorithm and the binning procedure, in terms of spatio-temporal resolution, coverage and data quality. The extinction datasets were validated using lidar profiles from three ground-based stations (Mauna Loa, Garmisch-Partenkirchen, Dumont d'Urville). The median difference of the CCI-GOMOS (Level 3) extinction and ground-based lidar profiles is between similar to 15% and similar to 45% in the 16-21 km altitude range, depending on the considered site and aerosol type. The CCI-GOMOS dataset was subsequently used, together with a MIPAS SO2 time series, to update a volcanic eruption inventory published previously, thus providing a more comprehensive list of eruptions for the ENVISAT period (2002-2012). The number of quantified eruptions increases from 102 to 230 in the updated inventory. This new inventory was used to simulate the evolution of the global radiative forcing by application of the EMAC chemistry-climate model. Results of this simulation improve the agreement between modelled global radiative forcing of stratospheric aerosols at about 100 hPa compared to values estimated from observations. Medium eruptions like the ones of Soufriere Hills/Rabaul (2006), Sarychev (2009) and Nabro (2011) cause a forcing change from about -0.1 W/m(2) to -0.2 W/m(2). (C) 2017 The Authors. Published by Elsevier Inc.Peer reviewe

    Martian ice cloud distribution obtained from SPICAM nadir UV measurements

    No full text
    The Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) instrument on board Mars Express has successfully performed one Martian year of measurements. Nadir UV (200–310 nm) measurements allowed it to build maps of ice cloud optical depth distribution for all seasons. The development and decay of the aphelion cloud belt (ACB) and polar hoods were observed. The characteristic values of the cloud optical thickness were 0.1–0.3 at the early stage of the ACB formation in the solar longitude range Ls = 20–60°. After Ls = 93°, the well-developed ACB showed cloud optical thicknesses varying between 0.3 and 0.8. The ACB quickly decayed after Ls = 140°. Both polar hoods were observed during their development and decay stages, showing cloud optical thicknesses of about 0.35. The north polar hood started to develop at Ls = 160° and the south one at Ls = 330°. Estimates of water content in the ice clouds gave values of 0.35–1.8 gm−2 for ACB and 0.4 gm−2 for the polar hoods. A comparison with water vapor abundance showed that only a small fraction (10–20% for ACB and 30% for the polar hoods) of total water content in the atmosphere was accumulated in clouds. The Martian surface albedo at the wavelength 300 nm appeared very low (0.004–0.018) and exhibited anticorrelation with the visual albedo consistent with optical properties of iron oxides abundant in Martian soils. The investigation of a regional dust storm allowed the estimation of dust optical parameters at the wavelength 300 nm (asymmetry factor gd = 0.8 and single scattering albedo σ d = 0.6)

    AerGOM, an improved algorithm for stratospheric aerosol extinction retrieval from GOMOS observations – Part 1: Algorithm description

    Get PDF
    International audienceThe GOMOS instrument on Envisat has successfully demonstrated that a UV–Vis–NIR spaceborne stellar occultation instrument is capable of delivering quality data on the gaseous and particulate composition of Earth's atmosphere. Still, some problems related to data inversion remained to be examined. In the past, it was found that the aerosol extinction profile retrievals in the upper troposphere and stratosphere are of good quality at a reference wavelength of 500 nm but suffer from anomalous, retrieval-related perturbations at other wavelengths. Identification of algo-rithmic problems and subsequent improvement was therefore necessary. This work has been carried out; the resulting AerGOM Level 2 retrieval algorithm together with the first data version AerGOMv1.0 forms the subject of this paper. The AerGOM algorithm differs from the standard GOMOS IPF processor in a number of important ways: more accurate physical laws have been implemented, all retrieval-related covariances are taken into account, and the aerosol extinction spectral model is strongly improved. Retrieval examples demonstrate that the previously observed profile perturbations have disappeared, and the obtained extinction spectra look in general more consistent. We present a detailed validation study in a companion paper; here, to give a first idea of the data quality, a worst-case comparison at 386 nm shows SAGE II–AerGOM correlation coefficients that are up to 1 order of magnitude larger than the ones obtained with the GOMOS IPFv6.01 data set

    In-flight performance and calibration of SPICAV SOIR onboard Venus Express

    No full text
    Solar occultation in the infrared, part of the Spectoscopy for Investigation of Characteristics of the Atmosphere of Venus (SPICAV) instrument onboard Venus Express, combines an echelle grating spectrometer with an acousto-optic tunable filter (AOTF). It performs solar occultation measurements in the IR region at high spectral resolution. The wavelength range probed allows a detailed chemical inventory of Venus’s atmosphere above the cloud layer, highlighting the vertical distribution of gases. A general description of the instrument and its in-flight performance is given. Different calibrations and data corrections are investigated, in particular the dark current and thermal background, the nonlinearity and pixel-to-pixel variability of the detector, the sensitivity of the instrument, the AOTF properties, and the spectral calibration and resolution

    Optical extinction by upper tropospheric/stratospheric aerosols and clouds: GOMOS observations for the period 2002-2008

    Get PDF
    International audienceAlthough the retrieval of aerosol extinction coefficients from satellite remote measurements is notoriously difficult (in comparison with gaseous species) due to the lack of typical spectral signatures, important information can be obtained. In this paper we present an overview of the current operational nighttime UV/Vis aerosol extinction profile results for the GOMOS star occultation instrument, spanning the period from August 2002 to May 2008. Some problems still remain, such as the ones associated with incomplete scintillation correction and the aerosol spectral law implementation, but good quality extinction values can be expected at a wavelength of 500 nm. Typical phenomena associated with atmospheric particulate matter in the Upper Troposphere/Lower Stratosphere (UTLS) are easily identified: Polar Stratospheric Clouds, tropical subvisual cirrus clouds, background stratospheric aerosols, and post-eruption volcanic aerosols (with their subsequent dispersion around the globe). In this overview paper we will give a summary of the current results

    Simultaneous measurements of OClO, NO<sub>2</sub> and O<sub>3</sub> in the Arctic polar vortex by the GOMOS instrument

    No full text
    International audienceWe present the first nighttime measurements of OClO from a limb-viewing satellite instrument in the Arctic polar vortex. The relationship between OClO, NO2 and O3 slant column densities in the Arctic polar vortex are analyzed from the GOMOS measurements. The retrieval process is based on a differential optical absorption spectroscopy (DOAS) method applied on the weighted median GOMOS transmittances. A study of the longitudinal distributions of OClO, NO2 and O3 above 65° north in January 2008 is presented. It shows a strong halogen activation in the lower stratosphere and a strong denoxification in the entire stratosphere inside the Arctic polar vortex. Time series of temperatures and OClO, NO2 and O3 slant column densities for the winters 2002/2003 to 2007/2008 are also presented. They highlight the correlation between temperature, OClO and NO2. The GOMOS instrument appears to be a very suitable instrument for the monitoring of OClO, NO2 and O3 in the stratosphere during nighttime

    A global OClO stratospheric layer discovered in GOMOS stellar occultation measurements

    No full text
    The stratospheric ozone depletion observed in polar regions is caused by several catalytic cycles induced by reactive chlorine and bromine species. By reacting with BrO, ClO causes the formation of OClO which is considered as a proxy of the halogen activation. We present the first global determination of the stratospheric OClO distribution measured during the year 2003 by the stellar occultation spectrometer GOMOS. Besides its expected polar abundance, we discovered the presence of a worldwide OClO layer in the upper stratosphere. At lower altitudes, OClO seems also to be present beyond the limit of the polar vortices, an unreported feature
    corecore