21 research outputs found

    Transfer of maternal antibodies against avian influenza virus in mallards (Anas platyrhynchos)

    Full text link
    Maternal antibodies protect chicks from infection with pathogens early in life and may impact pathogen dynamics due to the alteration of the proportion of susceptible individuals in a population. We investigated the transfer of maternal antibodies against avian influenza virus (AIV) in a key AIV host species, the mallard (Anas platyrhynchos). Combining observations in both the field and in mallards kept in captivity, we connected maternal AIV antibody concentrations in eggs to (i) female body condition, (ii) female AIV antibody concentration, (iii) egg laying order, (iv) egg size and (v) embryo sex. We applied maternity analysis to the eggs collected in the field to account for intraspecific nest parasitism, which is reportedly high in Anseriformes, detecting parasitic eggs in one out of eight clutches. AIV antibody prevalence in free-living and captive females was respectively 48% and 56%, with 43% and 24% of the eggs receiving these antibodies maternally. In both field and captive study, maternal AIV antibody concentrations in egg yolk correlated positively with circulating AIV antibody concentrations in females. In the captive study, yolk AIV antibody concentrations correlated positively with egg laying order. Female body mass and egg size from the field and captive study, and embryos sex from the field study were not associated with maternal AIV antibody concentrations in eggs. Our study indicates that maternal AIV antibody transfer may potentially play an important role in shaping AIV infection dynamics in mallards

    The Genome of Winter Moth (Operophtera brumata) Provides a Genomic Perspective on Sexual Dimorphism and Phenology

    Get PDF
    The winter moth (Operophtera brumata) belongs to one of the most species-rich families in Lepidoptera, the Geometridae (approximately 23,000 species). This family is of great economic importance as most species are herbivorous and capable of defoliating trees. Genome assembly of the winter moth allows the study of genes and gene families, such as the cytochrome P450 gene family, which is known to be vital in plant secondary metabolite detoxification and host-plant selection. It also enables exploration of the genomic basis for female brachyptery (wing reduction), a feature of sexual dimorphism in winter moth, and for seasonal timing, a trait extensively studied in this species. Here we present a reference genome for the winter moth, the first geometrid and largest sequenced Lepidopteran genome to date (638 Mb) including a set of 16,912 predicted protein-coding genes. This allowed us to assess the dynamics of evolution on a genome-wide scale using the P450 gene family. We also identified an expanded gene family potentially linked to female brachyptery, and annotated the genes involved in the circadian clock mechanism as main candidates for involvement in seasonal timing. The genome will contribute to Lepidopteran genomic resources and comparative genomics. In addition, the genome enhances our ability to understand the genetic and molecular basis of insect seasonal timing and thereby provides a reference for future evolutionary and population studies on the winter moth

    Fine-tuning of seasonal timing of breeding is regulated downstream in the underlying neuro-endocrine system in a small songbird

    Get PDF
    The timing of breeding is under selection in wild populations as a result of climate change, and understanding the underlying physiological processes mediating this timing provides insight into the potential rate of adaptation. Current knowledge on this variation in physiology is, however, mostly limited to males. We assessed whether individual differences in the timing of breeding in females are reflected in differences in candidate gene expression and, if so, whether these differences occur in the upstream (hypothalamus) or downstream (ovary and liver) parts of the neuroendocrine system. We used 72 female great tits from two generations of lines artificially selected for early and late egg laying, which were housed in climate-controlled aviaries and went through two breeding cycles within 1 year. In the first breeding season we obtained individual egg-laying dates, while in the second breeding season, using the same individuals, we sampled several tissues at three time points based on the timing of the first breeding attempt. For each tissue, mRNA expression levels were measured using qPCR for a set of candidate genes associated with the timing of reproduction and subsequently analysed for differences between generations, time points and individual timing of breeding. We found differences in gene expression between generations in all tissues, with the most pronounced differences in the hypothalamus. Differences between time points, and early- and late-laying females, were found exclusively in the ovary and liver. Altogether, we show that fine-tuning of the seasonal timing of breeding, and thereby the opportunity for adaptation in the neuroendocrine system, is regulated mostly downstream in the neuro-endocrine system.Peer reviewe

    Data from: Transfer of maternal antibodies against avian influenza virus in mallards (Anas platyrhynchos)

    No full text
    Maternal antibodies protect chicks from infection with pathogens early in life and may impact pathogen dynamics due to the alteration of the proportion of susceptible individuals in a population. We investigated the transfer of maternal antibodies against avian influenza virus (AIV) in a key AIV host species, the mallard (Anas platyrhynchos). Combining observations in both the field and in mallards kept in captivity, we connected maternal AIV antibody concentrations in eggs to (i) female body condition, (ii) female AIV antibody concentration, (iii) egg laying order, (iv) egg size and (v) embryo sex. We applied maternity analysis to the eggs collected in the field to account for intraspecific nest parasitism, which is reportedly high in Anseriformes, detecting parasitic eggs in one out of eight clutches. AIV antibody prevalence in free-living and captive females was respectively 48% and 56%, with 43% and 24% of the eggs receiving these antibodies maternally. In both field and captive study, maternal AIV antibody concentrations in egg yolk correlated positively with circulating AIV antibody concentrations in females. In the captive study, yolk AIV antibody concentrations correlated positively with egg laying order. Female body mass and egg size from the field and captive study, and embryos sex from the field study were not associated with maternal AIV antibody concentrations in eggs. Our study indicates that maternal AIV antibody transfer may potentially play an important role in shaping AIV infection dynamics in mallards

    Genotypes selected for early and late avian lay date differ in their phenotype, but not fitness, in the wild

    Get PDF
    Global warming has shifted phenological traits in many species, but whether species are able to track further increasing temperatures depends on the fitness consequences of additional shifts in phenological traits. To test this, we measured phenology and fitness of great tits (Parus major) with genotypes for extremely early and late egg lay dates, obtained from a genomic selection experiment. Females with early genotypes advanced lay dates relative to females with late genotypes, but not relative to nonselected females. Females with early and late genotypes did not differ in the number of fledglings produced, in line with the weak effect of lay date on the number of fledglings produced by nonselected females in the years of the experiment. Our study is the first application of genomic selection in the wild and led to an asymmetric phenotypic response that indicates the presence of constraints toward early, but not late, lay dates

    Maternal antibody transfer in free-living and captive mallards

    No full text
    From April until June 2010, free-living female mallards were caught from their nest in a woodland area in the Alblasserwaard, the Netherlands. Each captured female was marked with a metal ring, aged and several measurements were collected (tarsus length, head+bill length, wing length, body mass). Blood samples were collected for detection of antibodies to avian influenza virus (AIV). Per clutch two eggs were collected, of which the length and breadth was measured to assess egg volume. Egg yolks were separated to assess maternal antibodies to AIV, embryo size was measured and sex of embryos determined. In the same period, blood samples and several measurements (tarsus length, head+bill length, body mass) were collected from captured females in an outdoor aviary in Heteren, the Netherlands. Four eggs per clutch were collected (one per egg stage), of which the length and breadth was measured. Egg laying order was assessed. Egg yolks were separated and embryo size was measured. Serial dilution was applied to validate the use of OD-values of egg yolk and female serum as a quantitative estimate of antibody concentration

    Model output of the best-supported model used to analyse the variation in concentrations of maternal antibodies against AIV in egg yolk in the field and captive study.

    No full text
    1<p>Free-living mallards and eggs.</p>2<p>Captive mallards and eggs.</p>3<p>Relative concentration of antibodies against avian influenza virus (AIV) in female sera.</p><p>Model output of the best-supported model used to analyse the variation in concentrations of maternal antibodies against AIV in egg yolk in the field and captive study.</p

    Developmental stress does not induce genome‐wide methylation changes in wild great tit ( ) nestlings

    No full text
    Sepers B, Mateman AC, Gawehns F, Verhoeven KJF, van Oers K. Developmental stress does not induce genome‐wide methylation changes in wild great tit ( ) nestlings. Molecular Ecology. 2023;32(14):3960-3974.**Abstract** The environment experienced during early life is a crucial factor in the life of many organisms. This early life environment has been shown to have profound effects on morphology, physiology and fitness. However, the molecular mechanisms that mediate these effects are largely unknown, even though they are essential for our understanding of the processes that induce phenotypic variation in natural populations. DNA methylation is an epigenetic mechanism that has been suggested to explain such environmentally induced phenotypic changes early in life. To investigate whether DNA methylation changes are associated with experimentally induced early developmental effects, we cross‐fostered great tit (Parus major) nestlings and manipulated their brood sizes in a natural study population. We assessed experimental brood size effects on pre‐fledging biometry and behaviour. We linked this to genome‐wide DNA methylation levels of CpG sites in erythrocyte DNA, using 122 individuals and an improved epiGBS2 laboratory protocol. Brood enlargement caused developmental stress and negatively affected nestling condition, predominantly during the second half of the breeding season, when conditions are harsher. Brood enlargement, however, affected nestling DNA methylation in only one CpG site and only if the hatch date was taken into account. In conclusion, this study shows that nutritional stress in enlarged broods does not associate with direct effects on genome‐wide DNA methylation. Future studies should assess whether genome‐wide DNA methylation variation may arise later in life as a consequence of phenotypic changes during early development

    Primary sex ratio adjustment to experimentally reduced male UV attractiveness in blue tits

    No full text
    Korsten P, Lessells CM, Mateman AC, van der Velde M, Komdeur J. Primary sex ratio adjustment to experimentally reduced male UV attractiveness in blue tits. Behavioral Ecology. 2006;17(4):539-546
    corecore