11 research outputs found

    Molecular surveillance of norovirus, 2005-16: an epidemiological analysis of data collected from the NoroNet network.

    Get PDF
    BACKGROUND: The development of a vaccine for norovirus requires a detailed understanding of global genetic diversity of noroviruses. We analysed their epidemiology and diversity using surveillance data from the NoroNet network. METHODS: We included genetic sequences of norovirus specimens obtained from outbreak investigations and sporadic gastroenteritis cases between 2005 and 2016 in Europe, Asia, Oceania, and Africa. We genotyped norovirus sequences and analysed sequences that overlapped at open reading frame (ORF) 1 and ORF2. Additionally, we assessed the sampling date and country of origin of the first reported sequence to assess when and where novel drift variants originated. FINDINGS: We analysed 16 635 norovirus sequences submitted between Jan 1, 2005, to Nov 17, 2016, of which 1372 (8·2%) sequences belonged to genotype GI, 15 256 (91·7%) to GII, and seven (<0·1%) to GIV.1. During this period, 26 different norovirus capsid genotypes circulated and 22 different recombinant genomes were found. GII.4 drift variants emerged with 2-3-year periodicity up to 2012, but not afterwards. Instead, the GII.4 Sydney capsid seems to persist through recombination, with a novel recombinant of GII.P16-GII.4 Sydney 2012 variant detected in 2014 in Germany (n=1) and the Netherlands (n=1), and again in 2016 in Japan (n=2), China (n=8), and the Netherlands (n=3). The novel GII.P17-GII.17, first reported in Asia in 2014, has circulated widely in Europe in 2015-16 (GII.P17 made up a highly variable proportion of all sequences in each country [median 11·3%, range 4·2-53·9], as did GII.17 [median 6·3%, range 0-44·5]). GII.4 viruses were more common in outbreaks in health-care settings (2239 [37·2%] of 6022 entries) compared with other genotypes (101 [12·5%] of 809 entries for GI and 263 [13·5%] of 1941 entries for GII non-GII.Pe-GII.4 or GII.P4-GII.4). INTERPRETATION: Continuous changes in the global norovirus genetic diversity highlight the need for sustained global norovirus surveillance, including assessment of possible immune escape and evolution by recombination, to provide a full overview of norovirus epidemiology for future vaccine policy decisions. FUNDING: European Union's Horizon 2020 grant COMPARE, ZonMw TOP grant, the Virgo Consortium funded by the Dutch Government, and the Hungarian Scientific Research Fund

    Sensitive Detection of Multiple Rotavirus Genotypes with a Single Reverse Transcription-Real-Time Quantitative PCR Assay▿

    No full text
    Rotaviruses are one of the major causes of diarrhea in infants and children under 5 years old, especially affecting developing countries. In natural disasters, fecal matter and potable waters can mix, allowing low, yet infective, concentrations of rotavirus to be present in water supplies, constituting a risk for the population. Any of the most commonly detected rotavirus genotypes could originate an outbreak. The development of a fast and sensitive method that could detect the broadest possible range of rotavirus genotypes would help with efficient diagnosis and prevention. We have designed a reverse transcription (RT)-real-time quantitative PCR approach targeted to the rotaviral VP2 gene, based on a multiple-sequence alignment of different human rotaviral strains. To overcome the high nucleotide sequence diversity, multiple forward and reverse primers were used, in addition to a degenerate probe. The performance of the assay was tested on isolates representing the most prevalent human genotypes: G1P[8], G2P[4], G3P[8], G4P[8], G9P[8], and G12P[8]. The developed method improved classical rotavirus detection by enzyme-linked immunosorbent assay and nested RT-PCR by 5 and at least 1 order of magnitude, respectively. A survey of 159 stool samples indicated that the method can efficiently detect a broad range of rotavirus strains, including different G-P genotype combinations of human, porcine, and bovine origin. No cross-reactivity was observed with other enteric viruses, such as astrovirus, sapovirus, and norovirus

    Phylogenetic analysis of GBoV1.

    No full text
    <p>(A) Full length structural protein (VP1/2) sequences of all HBoV and animal bocavirus strains available in GenBank were used to determine phylogeny of GBoV1 by neighbor-joining analysis of pairwise distances between translated amino acid sequences. Bootstrap re-sampling was used to determine robustness of individual clades (values above 70% shown above the branches). (B) The 4 major open reading frames of GBoV1 were analyzed using maximum likelihood composition analysis method (MEGA4.1) comparing pairwise distances of translated sequences of representative variants (reference sequence) of all four HBoV species. Accession numbers of sequences used precedes the name of corresponding bocavirus species.</p

    Increase in viral gastroenteritis outbreaks in Europe and epidemic spread of new norovirus variant

    No full text
    BACKGROUND: Highly publicised outbreaks of norovirus gastroenteritis in hospitals in the UK and Ireland and cruise ships in the USA sparked speculation about whether this reported activity was unusual. METHODS: We analysed data collected through a collaborative research and surveillance network of viral gastroenteritis in ten European countries (England and Wales were analysed as one region). We compiled data on total number of outbreaks by month, and compared genetic sequences from the isolated viruses. Data were compared with historic data from a systematic retrospective review of surveillance systems and with a central database of viral sequences. FINDINGS: Three regions (England and Wales, Germany, and the Netherlands) had sustained epidemiological and viral characterisation data from 1995 to 2002. In all three, we noted a striking increase in norovirus outbreaks in 2002 that coincided with the detection and emergence of a new predominant norovirus variant of genogroup II4, which had a consistent mutation in the polymerase gene. Eight of nine regions had an annual peak in 2002 and the new genogroup II4 variant was detected in nine countries. Also, the detection of the new variant preceded an atypical spring and summer peak of outbreaks in three countries. INTERPRETATION: Our data from ten European countries show a striking increase and unusual seasonal pattern of norovirus gastroenteritis in 2002 that occurred concurrently with the emergence of a novel genetic variant. In addition to showing the added value of an international network for viral gastroenteritis outbreaks, these observations raise questions about the biological properties of the variant and the mechanisms for its rapid dissemination

    In-season and out-of-season variation of rotavirus genotype distribution and age of infection across 12 European countries before the introduction of routine vaccination, 2007/08 to 2012/13

    No full text
    The EuroRotaNet surveillance network has conducted rotavirus genotype surveillance since 2007 in 16 European countries. Using epidemiological and microbiological data from 39,786 genotyped rotavirus-positive specimens collected between September 2007 and August 2013, we assessed genotype distribution and age distribution of rotavirus gastroenteritis (RVGE) cases in and out of peak season in 12 countries which were yet to implement routine rotavirus vaccination. In multinomial multivariate logistic regression, adjusting for year, country and age, the odds of infection caused by genotype-constellation 2 DS-1-like stains (adjusted multinomial odds ratio (aM-OR) = 1.25; 95% confidence interval (CI): 1.13–1.37; p < 0.001), mixed or untypable genotypes (aM-OR = 1.55; 95% CI: 1.40–1.72; p < 0.001) and less common genotypes (aM-OR = 2.11; 95% CI:1.78–2.51; p < 0.001) increased out of season relative to G1P[8]. Age varied significantly between seasons; the proportion of RVGE cases younger than 12 months in the United Kingdom increased from 34% in season to 39% out of season (aM-OR = 1.66; 95% CI: 1.20–2.30), and the proportion five years and older increased from 9% in season to 17% out of season (aM-OR = 2.53; 95% CI: 1.67–3.82). This study provides further understanding of the rotavirus ecology before vaccine introduction, which will help interpret epidemiological changes in countries introducing or expanding rotavirus vaccination programmes

    Identification and characterization of a new bocavirus species in gorillas. PLoS One 5: e11948

    Get PDF
    A novel parvovirus, provisionally named Gorilla Bocavirus species 1 (GBoV1), was identified in four stool samples from Western gorillas (Gorilla gorilla) with acute enteritis. The complete genomic sequence of the new parvovirus revealed three open reading frames (ORFs) with an organization similar to that of known bocaviruses. Phylogenetic analysis using complete capsid and non structural (NS) gene sequence suggested that the new parvovirus is most closely related to human bocaviruses (HBoV). However, the NS ORF is more similar in length to the NS ORF found in canine minute virus and bovine parvovirus than in HBoV. Comparative genetic analysis using GBoV and HBoV genomes enabled characterization of unique splice donor and acceptor sites that appear to be highly conserved among all four HBoV species, and provided evidence for expression of two different NS proteins in all primate bocaviruses. GBoV is the first non-human primate bocavirus identified and provides new insights into the genetic diversity and evolution of this highly prevalent and recentl
    corecore