60 research outputs found

    Manipulating the perceived shape and color of a virtual limb can modulate pain responses

    No full text
    Changes in body representation may affect pain perception. The effect of a distorted body image, such as the telescoping effect in amputee patients, on pain perception, is unclear. This study aimed to investigate whether distorting an embodied virtual arm in virtual reality (simulating the telescoping effect in amputees) modulated pain perception and anticipatory responses to pain in healthy participants. Twenty-seven right-handed participants were immersed in virtual reality and the virtual arm was shown with three different levels of distortion with a virtual threatening stimulus either approaching or contacting the virtual hand. We evaluated pain/discomfort ratings, ownership, and skin conductance responses (SCRs) after each condition. Viewing a distorted virtual arm enhances the SCR to a threatening event with respect to viewing a normal control arm, but when viewing a reddened-distorted virtual arm, SCR was comparatively reduced in response to the threat. There was a positive relationship between the level of ownership over the distorted and reddened-distorted virtual arms with the level of pain/discomfort, but not in the normal control arm. Contact with the threatening stimulus significantly enhances SCR and pain/discomfort, while reduced SCR and pain/discomfort were seen in the simulated-contact condition. These results provide further evidence of a bi-directional link between body image and pain perception

    NAFLD and AATD Are Two Diseases with Unbalanced Lipid Metabolism: Similarities and Differences

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) is a type of steatosis commonly associated with obesity, dyslipidemia, hypertension, and diabetes. Other diseases such as inherited alpha-1 antitrypsin deficiency (AATD) have also been related to the development of liver steatosis. The primary reasons leading to hepatic lipid deposits can be genetic and epigenetic, and the outcomes range from benign steatosis to liver failure, as well as to extrahepatic diseases. Progressive hepatocellular damage and dysregulated systemic immune responses can affect extrahepatic organs, specifically the heart and lungs. In this review, we discuss the similarities and differences between the molecular pathways of NAFLD and AATD, and the putative value of hepatic organoids as novel models to investigate the physio pathological mechanisms of liver steatosis.This work was supported by grants from Instituto de Salud Carlos III (ISCIII): AESI PI20CIII/00015 and PISCIIIBB-PT20CIII/00009, and by Polish National Science Centre Grants 2015/17/B/NZ5/01370 and 2018/29/B/NZ5/02346.S

    Virtual Body Ownership Illusions for Mental Health: A Narrative Review.

    Get PDF
    Over the last 20 years, virtual reality (VR) has been widely used to promote mental health in populations presenting different clinical conditions. Mental health does not refer only to the absence of psychiatric disorders but to the absence of a wide range of clinical conditions that influence people\u2019s general and social well-being such as chronic pain, neurological disorders that lead to motor o perceptual impairments, psychological disorders that alter behaviour and social cognition, or physical conditions like eating disorders or present in amputees. It is known that an accurate perception of oneself and of the surrounding environment are both key elements to enjoy mental health and well-being, and that both can be distorted in patients suffering from the clinical conditions mentioned above. In the past few years, multiple studies have shown the effectiveness of VR to modulate such perceptual distortions of oneself and of the surrounding environment through virtual body ownership illusions. This narrative review aims to review clinical studies that have explored the manipulation of embodied virtual bodies in VR for improving mental health, and to discuss the current state of the art and the challenges for future research in the context of clinical care

    The role of engagement in teleneurorehabilitation: A systematic review

    Get PDF
    The growing understanding of the importance of involving patients with neurological diseases in their healthcare routine either for at-home management of their chronic conditions or after the hospitalization period has opened the research for new rehabilitation strategies to enhance patient engagement in neurorehabilitation. In addition, the use of new digital technologies in the neurorehabilitation \ufb01eld enables the implementation of telerehabilitation systems such as virtual reality interventions, video games, web-based interventions, mobile applications, web-based or telephonic telecoach programs, in order to facilitate the relationship between clinicians and patients, and to motivate and activate patients to continue with the rehabilitation process at home. Here we present a systematic review that aims at reviewing the effectiveness of different engagement strategies and the different engagement assessments while using telerehabilitation systems in patients with neurological disorders. We used PICO\u2019s format to de\ufb01ne the question of the review, and the systematic review protocol was designed following the Preferred Reported Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Bibliographical data was collected by using the following bibliographic databases: PubMed, EMBASE, Scopus, and Web of Science. Eighteen studies were included in this systematic review for full-text analyses. Overall, the reviewed studies using engagement strategies through telerehabilitation systems in patients with neurological disorders were mainly focused on patient self-management and self-awareness, patient motivation, and patient adherence subcomponents of engagement, that are involved in by the behavioral, cognitive, and emotional dimensions of engagement. Conclusion: The studies commented throughout this systematic review pave the way for the design of new telerehabilitation protocols, not only focusing on measuring quantitative or qualitative measures but measuring both of them through a mixed model intervention design (1). The future clinical studies with a mixed model design will provide more abundant data regarding the role of engagement in telerehabilitation, leading to a possibly greater understanding of its underlying components

    Identification of Novel Short C-Terminal Transcripts of Human SERPINA1 Gene

    Get PDF
    Human SERPINA1 gene is located on chromosome 14q31-32.3 and is organized into three (IA, IB, and IC) non-coding and four (II, III, IV, V) coding exons. This gene produces α1-antitrypsin (A1AT), a prototypical member of the serpin superfamily of proteins. We demonstrate that human peripheral blood leukocytes express not only a product corresponding to the transcript coding for the full-length A1AT protein but also two short transcripts (ST1C4 and ST1C5) of A1AT. In silico sequence analysis revealed that the last exon of the short transcripts contains an Open Reading Frame (ORF) and thus putatively can produce peptides. We found ST1C4 expression across different human tissues whereas ST1C5 was mainly restricted to leukocytes, specifically neutrophils. A high up-regulation (10-fold) of short transcripts was observed in isolated human blood neutrophils after activation with lipopolysaccharide. Parallel analyses by liquid chromatography-mass spectrometry identified peptides corresponding to C-terminal region of A1AT in supernatants of activated but not naïve neutrophils. Herein we report for the first time a tissue specific expression and regulation of short transcripts of SERPINA1 gene, and the presence of C-terminal peptides in supernatants from activated neutrophils, in vitro. This gives a novel insight into the studies on the transcription of SERPINA1 gene.This work has been partially funded by the Instituto de Salud Carlos III (www.isciii.es) grant PI14CIII/00070 (BMD) and SEPAR (Sociedad Española de Neumología y Cirugía Torácica, www.separ.es) grant 92/2014. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.S

    Quantitative Lipid Profiling Reveals Major Differences between Liver Organoids with Normal Pi*M and Deficient Pi*Z Variants of Alpha-1-antitrypsin.

    Get PDF
    Different mutations in the SERPINA1 gene result in alpha-1 antitrypsin (AAT) deficiency and in an increased risk for the development of liver diseases. More than 90% of severe deficiency patients are homozygous for Z (Glu342Lys) mutation. This mutation causes Z-AAT polymerization and intrahepatic accumulation which can result in hepatic alterations leading to steatosis, fibrosis, cirrhosis, and/or hepatocarcinoma. We aimed to investigate lipid status in hepatocytes carrying Z and normal M alleles of the SERPINA1 gene. Hepatic organoids were developed to investigate lipid alterations. Lipid accumulation in HepG2 cells overexpressing Z-AAT, as well as in patient-derived hepatic organoids from Pi*MZ and Pi*ZZ individuals, was evaluated by Oil-Red staining in comparison to HepG2 cells expressing M-AAT and liver organoids from Pi*MM controls. Furthermore, mass spectrometry-based lipidomics analysis and transcriptomic profiling were assessed in Pi*MZ and Pi*ZZ organoids. HepG2 cells expressing Z-AAT and liver organoids from Pi*MZ and Pi*ZZ patients showed intracellular accumulation of AAT and high numbers of lipid droplets. These latter paralleled with augmented intrahepatic lipids, and in particular altered proportion of triglycerides, cholesterol esters, and cardiolipins. According to transcriptomic analysis, Pi*ZZ organoids possess many alterations in genes and cellular processes of lipid metabolism with a specific impact on the endoplasmic reticulum, mitochondria, and peroxisome dysfunction. Our data reveal a relationship between intrahepatic accumulation of Z-AAT and alterations in lipid homeostasis, which implies that liver organoids provide an excellent model to study liver diseases related to the mutation of the SERPINA1 gene.This research was funded by INSTITUTO DE SALUD CARLOS III (ISCIII), grants numbers AESI PI20CIII/00015 and PT20CIII/00009, and the APC was funded by AESI PI20CIII/00015.S

    A generalist–specialist trade-off between switchgrass cytotypes impacts climate adaptation and geographic range

    Get PDF
    Polyploidy results from whole-genome duplication and is a unique form of heritable variation with pronounced evolutionary implications. Different ploidy levels, or cytotypes, can exist within a single species, and such systems provide an opportunity to assess how ploidy variation alters phenotypic novelty, adaptability, and fitness, which can, in turn, drive the development of unique ecological niches that promote the coexistence of multiple cytotypes. Switchgrass, Panicum virgatum, is a widespread, perennial C4 grass in North America with multiple naturally occurring cytotypes, primarily tetraploids (4×) and octoploids (8×). Using a combination of genomic, quantitative genetic, landscape, and niche modeling approaches, we detect divergent levels of genetic admixture, evidence of niche differentiation, and differential environmental sensitivity between switchgrass cytotypes. Taken together, these findings support a generalist (8×)–specialist (4×) trade-off. Our results indicate that the 8× represent a unique combination of genetic variation that has allowed the expansion of switchgrass’ ecological niche and thus putatively represents a valuable breeding resource

    A Better Touch: C-tactile Fibers Related Activity is Associated to Pain Reduction During Temporal Summation of Second Pain

    Get PDF
    C-tactile (CT) fibers, responsible for the so-called “affective” touch (AT), have drawn a fair amount of attention within the scientific community for their marked social dimension. However, while the pain-relieving potential of discriminative touch (DT) has been documented, proofs of the analgesic properties of AT are still scarce. Additionally, no study has so far tested its possible pain-relieving effect on a clinically-relevant model. Temporal summation of second pain (TSSP), otherwise referred to as “wind-up,” relies on repetitive stimulation of C-nociceptors and it is thought to reflect central sensitization, a process linked to many chronic pain conditions. In the present experimental, within participants, design we induced TSSP through trains of ascending and descending repetitive heat stimulation. Forty-two healthy participants’ pain was measured during 2 different tactile stimulations (stroking velocities AT: 10 cm/s; DT: 0.3 cm/s) or without concomitant tactile input. Since measures of pleasantness of the tactile stimulation have been found to strongly correlate with C-tactile fibers’ firing rate, these, together with participants’ body awareness, were also taken into account. Our results show that AT brought about a decrease of our participants’ pain as opposed to both DT and no touch, while DT did not produce any significant pain reduction. Thus, only AT successfully modulated wind-up. As expected, AT was perceived as more pleasant than DT, while a clear relationship between body awareness and pain was found only during DT. Targeting CT fibers could pave the way to new treatments for chronic pain conditions whose aetiology depend on abnormal C-nociceptors’ physiology. Perspective: This study extends previous findings on the analgesic potential of affective touch, documenting a clear pain reduction during temporal summation of second pain (TSSP). Since TSSP is thought to reflect central sensitization, the psychophysiological mechanisms of affective touch could be exploited for new chronic pain treatments

    Altered visual feedback from an embodied avatar unconsciously influences movement amplitude and muscle activity

    Get PDF
    Evidence suggests that the sense of the position of our body parts can be surreptitiously deceived, for instance through illusory visual inputs. However, whether altered visual feedback during limb movement can induce substantial unconscious motor and muscular adjustments is not known. To address this question, we covertly manipulated virtual body movements in immersive virtual reality. Participants were instructed to flex their elbow to 90° while tensing an elastic band, as their virtual arm reproduced the same, a reduced (75°), or an amplified (105°) movement. We recorded muscle activity using electromyography, and assessed body ownership, agency and proprioception of the arm. Our results not only show that participants compensated for the avatar’s manipulated arm movement while being completely unaware of it, but also that it is possible to induce unconscious motor adaptations requiring significant changes in muscular activity. Altered visual feedback through body ownership illusions can influence motor performance in a process that bypasses awareness
    • …
    corecore