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Abstract: Non-alcoholic fatty liver disease (NAFLD) is a type of steatosis commonly associated with
obesity, dyslipidemia, hypertension, and diabetes. Other diseases such as inherited alpha-1 antit-
rypsin deficiency (AATD) have also been related to the development of liver steatosis. The primary
reasons leading to hepatic lipid deposits can be genetic and epigenetic, and the outcomes range
from benign steatosis to liver failure, as well as to extrahepatic diseases. Progressive hepatocellular
damage and dysregulated systemic immune responses can affect extrahepatic organs, specifically the
heart and lungs. In this review, we discuss the similarities and differences between the molecular
pathways of NAFLD and AATD, and the putative value of hepatic organoids as novel models to
investigate the physio pathological mechanisms of liver steatosis.
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1. Non-Alcoholic Fatty Liver Disease (NAFLD)

Non-alcoholic fatty liver disease (NAFLD) is a common liver condition characterized
by an excess of lipid accumulation in hepatocytes (steatosis), which is present in about 25%
of the adult population [1]. This term includes a range of liver diseases from benign steatosis
to cirrhosis, passing through steatohepatitis (NASH) to hepatocellular carcinoma (HCC) [2].
There are different environmental or genetic risk factors that can lead to NAFLD [3],
including insulin resistance and obesity. MAFLD (metabolic associated fatty liver disease)
has been proposed as a new name that is expected to better mirror the heterogeneities and
similarities between NAFLD and metabolic syndrome [4,5]; however, some controversies
remain regarding this new name [6].

The pathology typically begins with an altered lipid homeostasis, the intracellular
increment of fats followed by an uncontrolled inflammatory response, which can eventually
lead to cirrhosis and/or to HCC [7]. Initially, most of the NAFLD patients are asymptomatic
and blood markers typically do not reflect liver impairment [8]. The progression to NASH
is associated with liver inflammation usually followed by fibrosis, whereas in some cases,
the development of liver failure requires liver transplantation. However, cardiovascular
diseases (CVD) are among the main causes of death among NAFLD patients [9].

It is widely accepted that free fatty acids act as primary triggers of NAFLD, although
there are other factors implicated in disease progression such as dietary habits, obesity,
insulin resistance, intestinal microbiota, or epigenetic factors [10]. Patients with NASH
typically have high levels of blood endotoxins, suggesting that bacterial endotoxins play a
role in NASH pathogenesis [11,12]. Among the intestinal microflora, Gram-negative bacilli
seem to be the largest source of endotoxins, such as lipopolysaccharides (LPS). If intestinal
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enterobacteria invade the portal vein, they inflame the hepatic vasculature leading to
persistent inflammation and progressive liver damage. In obese individuals, an increased
expression of CD14, an endotoxin co-receptor in the liver, may result in leptin-induced
endotoxin hyper responsiveness [13].

Steatosis is defined by the presence of lipid droplets (LDs) in the cytosol of more than
5% of hepatocytes, which is a consequence of altered lipid metabolism when fatty acid
obtention exceeds fatty acid removal [14]. Lipid droplets are dynamic organelles composed
of neutral lipids, mainly triglycerides and cholesterol esters [15], which act as energy
storage but also as protectors against the deleterious effects of free fatty acids [16]. LDs
are increasingly recognized as having important non-pathological roles in cell signalling
and function. The properties of LDs are highly regulated by proteins coating the surface of
LDs to control lipid trafficking and flux [17]. LDs also play roles in endoplasmic reticulum
(ER) stress response, protein storage and degradation, and in infection and immunity [18].
Hence, although LDs formation, per se, is not a deleterious event, the accumulation of
intrahepatic lipids is associated with increased circulating lipoproteins and increased risk
of CVD [19], the main cause of death in NAFLD patients, as mentioned above.

2. Alpha-1 Antitrypsin Deficiency (AATD)

Inherited alpha-1 antitrypsin deficiency (AATD) is a rare monogenic disorder (ORPHA
60) mainly related to lung and/or liver diseases, but also to neutrophilic panniculitis
or systemic vasculitis [20]. AATD is characterized by low levels of circulating alpha-1
antitrypsin (AAT), an acute phase glycoprotein encoded by the SERPINA1 gene, in which
more than 120 allelic variants have been described [21]. Some mutations in the SERPINA1
gene have no clinical relevance and are considered as normal variants or M alleles; however,
deficient alleles, typically resulting from point mutations or small deletions, are related
to low levels or functional activity of AAT, and mild to severe clinical manifestations.
Among the deficient alleles, the most clinically relevant and best recognized is the Z allele
(Glu342Lys), originating from a point mutation in exon 5 [22]. According to current data,
the homozygosity in the Z allele is present in about 96% of AATD patients, whereas the
remaining 4% are heterozygous carriers or contain other rare alleles [23].

AAT is primarily synthetized by hepatocytes (about 80%) and acts not only as a main
inhibitor of neutrophil elastase and proteinase-3 [24,25], but also as a modulator of cas-
pase activity and apoptosis, as an antioxidant, and/or as a broad immunomodulatory
protein [26,27]. The complex tertiary structure of AAT makes it extremely vulnerable to
conformational changes, as it happens in the Z allele where a change in just one amino
acid triggers AAT polymerization. As mentioned above, AATD mainly affects the liver and
lungs; hepatic manifestations are due to AAT intrahepatic polymer accumulation and cyto-
toxicity [28], whereas lung pathologies are due to low circulating levels, mostly polymeric
forms of AAT resulting in an insufficient inhibition of neutrophil proteases [29]. On the
other hand, among AATD carriers there is a great variability in clinical presentations: from
asymptomatic to those who develop early onset emphysema [30] and/or liver steatosis,
fibrosis, cirrhosis, or hepatocarcinoma [31]. This suggests that, in addition to the mutations
in SERPINA1 gene, other genetic and/or environmental factors contribute to the clinical
manifestations.

It has been demonstrated that AAT polymers accumulate in the ER by mechanisms
that are not completely understood. Although polymer formation triggers the unfolded
protein response [32] to be cleared out of the cell by autophagy or the ER-associated
degradation (ERAD) pathways, aggregates can remain in hepatocytes, eliciting cellular
stress and inflammation, which lead to liver damage [33–35].

The liver disease in AATD people with a homozygous Z allele has been associated
with liver steatosis [36]. Concordantly, transgenic mice expressing the human Z allele
displayed an altered lipid metabolism with increased levels of hepatic triglycerides and
cholesterol [37], as well as high numbers of LDs [36]. Likewise, AATD patients with a
homozygous Z allele seem to have lower serum levels of cholesterol and triglycerides than
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non-AATD patients [36], pointing to hampered lipoprotein secretion and a lower risk of
CVD [38].

3. Meta-Inflammation in NAFLD and AATD

Meta-inflammation is defined as a low-grade chronic inflammation associated with
metabolic syndrome [39]. Most scientists agree that meta-inflammation, as a component
of immune system, links chronic inflammatory diseases and obesity [40]. In this scenario,
adipose tissue macrophages can react to high concentrations of fatty acids and initiate sig-
nalling pathways promoting monocyte mobilization and differentiation into macrophages,
which further contribute to the inflammatory response [41,42].

Macrophages derived from hematopoietic progenitors are involved in homeostatic
and pathogenic processes. In adult tissues, the functions of macrophages are dependent on
the microenvironment, and thus macrophages can acquire a proinflammatory (M1) or an
anti-inflammatory (anti-fibrotic) (M2) phenotype [43,44]. Bone-marrow monocyte-derived
macrophages can also acquire a pro-inflammatory phenotype and contribute to inflamma-
tion [45]. Because of lipid accumulation in NAFLD, not only is macrophage polarization
altered in favour of the M1 phenotype, but macrophages also undergo metabolic repro-
gramming leading to increased fatty acid intake and worsen steatosis [46]. Activated liver
Kupffer cells release pro-inflammatory cytokines, which in turn activate hepatic stellate
cells, hepatocytes, or endothelial cells [47,48], promoting monocyte infiltration and boosting
macrophage population. Furthermore, fat accumulation in Kupffer cells leads to oxidative
stress and structural changes in the plasmatic and mitochondrial membranes, while in the
context of AATD, due to AAT protein accumulation in the ER, this also leads to activation of
the unfolded protein response [14]. An increase in free fatty acids intensifies lipid oxidation,
mainly in the mitochondria and peroxisomes, as well as free-radical production, which
can lead to mitochondrial damage and fragmentation [49,50]. On the other hand, ER stress
induced by misfolded proteins triggering the unfolded protein response elicits p53 expres-
sion, mitochondrial cytochrome c release, and apoptosis [51]. Hence, liver Kupffer cells
can contribute not only to the sustained meta-inflammation, but also to the progression of
NAFLD (Figure 1).

In this scenario, a member of the class B scavenger receptor, CD36, plays a central
role. CD36 binds oxidized low-density lipoproteins, long-chain fatty acids, phospholipids,
and collagen [52,53]. Its high expression on macrophages, adipocytes, cardiomyocytes,
and hepatic cells is important for fatty acid uptake and lipid metabolism. In fact, CD36
expression is much lower in normal hepatocytes than in hepatic steatosis and NAFLD [54].
An increased hepatic CD36 expression can enhance fatty acid uptake and triglyceride
accumulation, although the precise role of CD36 in the pathogenesis of fatty liver remains
unclear.

In addition to hepatocytes, monocytes and macrophages also express the AAT pro-
tein [55–57]. A study based on transgenic Z-AAT mice, reproducing most of the liver
characteristics of AATD, showed high numbers of liver macrophages [58]. The characteri-
zation of these AATD-related macrophages revealed an altered immunophenotype with
a population expressing F4/80hi and TIM4neg, known as a contributor in NAFLD pro-
gression [59]. As mentioned above, AAT possesses a broad spectrum of anti-inflammatory
properties [60], whereas polymers of Z-AAT are pro-inflammatory, and their accumula-
tion in monocytes and macrophages may trigger NLRP3 inflammasome activation [61].
Kupffer cells also express and accumulate the Z-AAT protein [62], but the effect of Z-AAT
accumulation on AATD progression remains to be clarified [59].
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Figure 1. Schematic presentation of the development of chronic inflammation in NAFLD and AATD. 
Activated liver macrophages promote inflammation characterized by cytokine and free radical (ROS) 
production and increased lipid oxidation. In this scenario, to diminish the net increment of lipids, 
hepatocytes fuse triglycerides (TAG) stored in lipid droplets into APOB-containing lipoproteins and 
increase the expression of the CD36 receptor to export the lipids out of the cells. In NAFLD patients, 
this increases the plasma lipoprotein levels with the concomitant risk of cardiovascular disease 
(CVD). In AATD patients, despite the increased expression of CD36, the accumulation of Z-AAT 
protein impairs lipids secretion and lowers the risk of CVD. LPL: lipoprotein lipase; HL: hepatic 
lipase; CETP: cholesteryl ester transfer protein; oxLDL: oxidized LDL. 

4. Features of Lipid Metabolism in NAFLD and AATD 
Lipids are key cellular components involved in maintaining the integrity of cellular 

membranes and energy homeostasis, although they also contribute to pathologies [63]. 
Lipid homeostasis in the liver depends on the equilibrated balance between lipid acquisition 
(de novo formation and uptake), storage, and removal [64]. Neutral lipids (sterol esters and 
triglycerides) are stored in LDs, and in a healthy liver, these lipids do not exceed 5% [65]. 
Fatty acids stored as sterol esters and triglycerides are used during liver homeostasis to 
generate energy via fatty acid oxidation or are transported to other organs in very-low-
density lipoprotein (VLDL) [66,67] (Figure 1). 

A composite route required for VLDL assembly is the lipidation of APOB100, a main 
and highly hydrophobic apolipoprotein. Initially, VLDLs are pre-assembled in ER lumen 
by the microsomal triglyceride transfer protein [68] and are subsequently moved to the 
secretory pathway as VLDL2 particles (TAG poor). These particles are secreted out of the 
hepatocytes or undergo additional lipidation through LD fusion and become VLDL1 
particles (TAG enriched) [69]. A failure in APOB lipidation triggers its degradation because 
the protein is unable to fold correctly [70]. Therefore, VLDL secretion regulates the fat 
amount in the liver, and VLDL production and secretion are considered as contributors to 
CVDs [71]. An imbalanced lipid metabolism in NAFLD patients is related to higher levels 
of VLDL production (and consequently VLDL secretion), which links NAFLD with CVDs. 

NAFLD is a multifactorial disorder, in which genetic alterations play a role [72]. For 
example, genes such as PNPLA3 [73] and TM6SF2 [74] are linked to a high risk of NAFLD. 
The patatin-like phospholipase domain-containing 3 gene (PNPLA3) encodes a 

Figure 1. Schematic presentation of the development of chronic inflammation in NAFLD and AATD.
Activated liver macrophages promote inflammation characterized by cytokine and free radical (ROS)
production and increased lipid oxidation. In this scenario, to diminish the net increment of lipids,
hepatocytes fuse triglycerides (TAG) stored in lipid droplets into APOB-containing lipoproteins and
increase the expression of the CD36 receptor to export the lipids out of the cells. In NAFLD patients,
this increases the plasma lipoprotein levels with the concomitant risk of cardiovascular disease (CVD).
In AATD patients, despite the increased expression of CD36, the accumulation of Z-AAT protein
impairs lipids secretion and lowers the risk of CVD. LPL: lipoprotein lipase; HL: hepatic lipase; CETP:
cholesteryl ester transfer protein; oxLDL: oxidized LDL.

4. Features of Lipid Metabolism in NAFLD and AATD

Lipids are key cellular components involved in maintaining the integrity of cellular
membranes and energy homeostasis, although they also contribute to pathologies [63].
Lipid homeostasis in the liver depends on the equilibrated balance between lipid acquisition
(de novo formation and uptake), storage, and removal [64]. Neutral lipids (sterol esters and
triglycerides) are stored in LDs, and in a healthy liver, these lipids do not exceed 5% [65].
Fatty acids stored as sterol esters and triglycerides are used during liver homeostasis to
generate energy via fatty acid oxidation or are transported to other organs in very-low-
density lipoprotein (VLDL) [66,67] (Figure 1).

A composite route required for VLDL assembly is the lipidation of APOB100, a main
and highly hydrophobic apolipoprotein. Initially, VLDLs are pre-assembled in ER lumen
by the microsomal triglyceride transfer protein [68] and are subsequently moved to the
secretory pathway as VLDL2 particles (TAG poor). These particles are secreted out of
the hepatocytes or undergo additional lipidation through LD fusion and become VLDL1
particles (TAG enriched) [69]. A failure in APOB lipidation triggers its degradation because
the protein is unable to fold correctly [70]. Therefore, VLDL secretion regulates the fat
amount in the liver, and VLDL production and secretion are considered as contributors to
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CVDs [71]. An imbalanced lipid metabolism in NAFLD patients is related to higher levels
of VLDL production (and consequently VLDL secretion), which links NAFLD with CVDs.

NAFLD is a multifactorial disorder, in which genetic alterations play a role [72]. For
example, genes such as PNPLA3 [73] and TM6SF2 [74] are linked to a high risk of NAFLD.
The patatin-like phospholipase domain-containing 3 gene (PNPLA3) encodes a membrane-
associated lipase that mediates triacylglycerol hydrolysis to manage the increasing amount
of lipids after a meal intake. The nonsynonymous transversion from cytosine to guanine
(rs738409) renders an amino acid change at codon 148 (isoleucine to methionine) that results
in an imbalance between the liver triglyceride content and VLDL secretion [75]. The results
found by the authors point to a reduced mobilization of triacylglycerols from lipid droplets,
even though VLDL assembly itself is not damaged or diminished, which could justify why
this variant is not associated with a risk of CVD [75].

The transmembrane 6 superfamily member 2 (TM6SF2) gene, mainly expressed by
hepatocytes, enterocytes, and renal cells, encodes for a protein located either in the ER
membrane or in the ER−Golgi intermediate compartment. This protein participates in
triglyceride secretion and LD formation, and thus regulates the liver fat content. A variant of
the TM6SF2 gene (glutamic acid 167 to lysine) is implicated in reduced VLDL secretion [74].
Despite contradictory results in a mouse model using protein overexpression or silencing,
lipid accumulation in humans has proven that this variant of the TM6SF2 gene is responsible
of the reduced hepatic secretion of VLDL1, which is generated by the combination of VLDL2
and LDs. One putative explanation for this finding is the inability of the variant protein
to stabilize APOB [76]. Hence, similarly to the above-described variant of the PNPLA3
gene, despite fat accumulation in the liver, there is no additional risk for CVD. These latter
gene variants, to some extent, resemble the situation observed in AATD patients with liver
disease, in which diminished hepatic lipid secretion and reduced risk of ischemic heart
disease have been reported [36,38].

The lipid components of low-density lipoproteins (LDL) are involved in oxidation
reactions, generating a variety of oxidized-lipid-derived products found in atheroma
plaques [77]. The intracellular uptake of these oxidized products is mediated by the
CD36 [78–80], a fatty acid translocase and signalling molecule acting as a receptor for
lipoproteins; its derivatives [81]; and free fatty acids [82]. The expression of CD36 is
upregulated in NAFLD [83–85]. Some studies based on mice models suggest that CD36 is
a negative regulator of the autophagy and lipophagy induction. In line with this, CD36
knockdown in HepG2 cells increases lipophagy and β-oxidation, which contribute to lipid
accumulation [86].

An increase in CD36 expression has also been linked with AATD [87]. Moreover,
a functional relationship between AAT and CD36 has been described, where AAT pre-
vented inflammasome activation in monocytes/macrophages through a signalling cascade
involving CD36 [88].

5. Relationships between NAFLD, AATD, and Chronic Obstructive Pulmonary
Disease (COPD)

NAFLD is a progressive liver disease evolving via NASH and fibrosis to cirrhosis,
and eventually to hepatocellular carcinoma [89]. Investigations demonstrate that NAFLD,
NASH, and liver fibrosis are prevalent in patients with COPD (by 41%, 37%, and 61%,
respectively) [90]. Patients with COPD and NASH seem to have elevated TNF-α and
leptin levels, unlike patients with COPD without liver damage [91]. It is thought that the
chronic inflammatory synergy between NAFLD/NASH and COPD can trigger further
injury and the progression of both diseases [91–93]. Additional studies are warranted to
answer questions whether NAFLD and COPD develop together or separately.

AATD is the most common genetic cause of emphysema, and, as a result, the lack of
normal levels of AAT do not protect the lungs from damage, leading to an increased risk for
developing COPD. Subjects with homozygous ZZ and heterozygous MZ AATD genotypes
seem to also have a higher risk of developing NAFLD than non-deficient subjects [94]. For
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decades, intravenous therapy with human-plasma-purified AAT has been used to treat
patients with AATD-related emphysema. The lung-protective effects of AAT are attributed
to the inhibition of proteases involved in lung matrix fragmentation, macrophage activation,
and endothelial cell apoptosis [95]. Therapy with AAT can rescue epithelial cells from free-
heme-mediated pro-inflammatory activation, cell death, and dysfunctional autophagy [96],
and prevent acute lung rejection in a mouse orthotopic lung transplantation model [97].
We have also demonstrated hepatoprotective effects of AAT in three different mouse
models of acute liver failure (ALF) via the inhibition of caspase-3 and TNF-α, which was
also confirmed in a model of alcoholic steatohepatitis [98,99]. Moreover, AAT has been
reported to inhibit the process of renal fibrosis through the suppression of TGF-β/Smad3
signalling [100], and to lower the liver stiffness, liver fibrosis, and lower levels of liver
enzymes [36]. In INS-1E cells or a primary rat pancreatic islet model, we previously
demonstrated that AAT increases insulin secretion in a glucose-dependent manner and
protects INS-1E cells from cytokine-induced apoptosis [101]. Patients with NAFLD are
associated with hepatic and adipose tissue insulin resistance, and typically have higher
levels of serum TNF-α and IL-6, soluble TNFR1 (sTNFR1), and soluble IL-6 receptor (sIL-
6R) than patients with a simple steatosis without signs of inflammation, ballooning cells,
or fibrosis [102]. Persistent inflammation and altered lipid homeostasis may lead to the
evolution of both NAFLD and COPD. In this context, therapy with the AAT protein is of
great interest because of its broad tissue-protective effects, which might be beneficial for
both NAFLD and COPD patients.

6. Organoids to Model Liver Disease

In vitro two-dimensional (2D) cell models are widely used to reproduce the phys-
iopathology and molecular mechanisms of various diseases. Traditionally used human cell
lines are relatively cheap, easy to handle, and can be genetically modified. Nevertheless,
the use of cell lines to address questions related to specific human diseases is not always
straightforward, and they also lack tissue organization and grow without a physiological
context. Therefore, the more recently developed three-dimensional (3D) cell cultures have
become better experimental tools [103]. The 3D cultures known as organoids can be gener-
ated from adult stem cells, embryonic stem cells (ESCs), or induced pluripotent stem cells
(iPSCs). Organoids derived from human progenitor cells can be long-term expanded; they
can recapitulate organ architecture with remarkable fidelity, with the presence of multiple
cell types of the specific organ [104,105]; and they assume at least some functions of the
organ. All these reasons make them a valuable tool for testing new therapeutic drugs and
for disease modelling to investigate human diseases including neural disorders [106,107],
cancer [108,109], lung diseases [110–112], liver diseases [113,114], and others.

In 2001, for the first time, Michalopoulos and colleagues described 3D liver organoids
derived from rat hepatocytes [115] that had short-term survival in the culture. A long-term
maintenance of cultured organoids was achieved in 2013 by Huch and colleagues from
adult murine tissue by using matrigel, hepatocyte growth factor (HGF), epidermal growth
factor (EGF), and factors induced under liver damage such as fibroblast growth factor and
R-spondin [116]. In parallel, Takebe and collaborators described an alternative method
to obtain liver organoids by combining human iPSC-derived hepatocytes, mesenchymal
stem cells, and umbilical cord cells [117]. Subsequently, these modified protocols became
useful for the modelling of different diseases [118]. Furthermore, patient-derived organoids
are an excellent tool to study personalized presentations of pathophysiological conditions
influenced by genetic and/or environmental factors.

Hepatic organoids generated from AATD patients have been proven as a new tool to
study the pathophysiological characteristics of the liver [119,120]. These organoids have
typical intrahepatic retention of Z-AAT polymers and show a positive diastase-resistant
(PAS) staining [119,120]. Additionally, when AATD hepatic organoids were differentiated
into hepatocytes, Huch and collaborators showed that these cells presented high ER stress
and apoptosis [120]. Gomez-Mariano and colleagues further confirmed that differentiated
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liver organoids express albumin (ALB) and apolipoprotein B (APOB) genes, two specific
hepatocyte markers [119].

Hepatocytes or hepatic parenchymal cells comprise approximately 60% of all liver
cells, which form a 3D lattice filled by hepatic sinusoids. This latter provides nourishment
for the parenchymal cells of the 3D structure, inter-luminal Kupffer, sinusoidal endothelial
cells, and perisinusoidal stellate cells [121]. Different 3D cell strategies have been used
for NAFLD modelling because the progression of this disease depends on the interactions
among multiple liver cell types [122,123]. For example, Shen and collaborators treated
hepatic stellate cells (HSC) with conditioned media from patient-derived liver organoids
and proved that hepatocyte-derived VEGFA induces HSC activation and hepatocarcinoma
progression, even in the absence of increased lipid accumulation [124]. Another NAFLD
3D model in vitro was based on the co-cultures of HepG2 (hepatocyte cell line) and LX-2
(HSC), forming hepatic spheroids and accumulating intracellular lipids after exposure
to free fatty acid (FFA) [125]. To reproduce the NASH condition, spheroids were also
generated using co-cultures of hepatocytes, HSC, and macrophages (ratio 4:1:1) in a culture
medium containing high glucose and palmitate. In this model, treatment with the anti-
CD47 antibody, a new therapeutic in obesity, did not improve steatosis, but reduced fibrosis
and liver inflammation by inhibiting neutrophil and macrophage activation [126]. Likewise,
the combination of hepatocytes (80%), Kupffer cells (10%), HSC (5%), and endothelial cells
(5%) have been used to test a protective role of miR-122 in NAFLD. It has been suggested
that miR-122 affects steatosis, fibrosis, and altered lipid metabolism because it changes
the expression of lipases and fatty acid binding proteins implicated in intrahepatic lipid
accumulation [127].

Other approaches to generate liver organoids are based on the differentiation of
iPSCs [128]. To reproduce NAFLD, iPSCs-derived liver organoids were exposed to different
free fatty acid treatments and analysed for the enlargement of hepatocytes (ballooning),
as well as for organoids stiffness by atomic force microscopy [128]. More sophisticated
approaches were also applied to deepen our knowledge regarding NAFLD development.
For example, sirtuin-1 has been implicated in the progression of NAFLD due to its effects on
de novo lipogenesis and beta-oxidation [129,130]. Different types of 3D models for NAFLD
have been reviewed by Park and colleagues [131] and by Wang and collaborators [122].

Liver organoids generated from AATD patient-related liver disease seem to reca-
pitulate hepatocyte alterations [119]. Like mature hepatocytes, differentiated hepatic
organoids express albumin and apolipoprotein B, although it was found that Z-AATD-
derived organoids show a lower expression of both genes, ALB and APOB [119]. A tran-
scriptomic analysis carried out by our group confirmed the reduced APOB expression in
Z-AATD organoids, which could at least partially explain why ZZ patients, despite their
increased level of hepatic steatosis, show reduced levels of serum triglycerides and VLDL
lipoproteins [36]. In addition to this downregulation of APOB transcription levels, other
factors may contribute to the final amount of APOB [132]. Among differentially expressed
genes, we also found CD36 as one of the upregulated genes in Z-AATD organoids when
compared with the controls, somehow mimicking the behaviour displayed in NAFLD. The
AATD-related steatosis is likely favoured by the increased expression in the CD36 receptor,
although some work is still needed to unravel the relationship between them. On the other
hand, the reduced APOB protein (Figure 1) might contribute to the diminished circulating
levels of lipoproteins [36,133] and reduced risk of CVDs [38]. Yet, the association between
AATD and CVDs requires additional studies.

7. Conclusions

NAFLD and AATD are hepatic diseases characterized by increased hepatic lipid
content and consequently the intracellular accumulation of lipid droplets. To maintain liver
homeostasis, hepatocytes in NAFLD eliminate the excess of lipids by exporting them to the
bloodstream as lipoproteins, which results in an increased risk of cardiovascular disease
in NAFLD patients. Conversely, in patients with AATD, the intrahepatic accumulation of
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misfolded AAT protein lowers lipid secretion and thus risk for cardiovascular disease. The
use of patient-derived liver organoids as new cellular models is of great value, especially
for the development of new personalized therapies, as well as for studying the underlying
molecular mechanisms in NAFLD and AATD.
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