14 research outputs found
Recherche de matiÚre noire légÚre avec les expériences DAMIC à SNOLAB et DAMIC-M : investigations de bruit de fonds radioactifs et sur les caméras CCD Skipper en silicium
Le programme DAMIC (Dark Matter in CCDs) utilise le silicium massif des CCDs scientifiques pour chercher des signaux dâionisation produits par les interactions de matiĂšre noire, dont la nature est encore inconnue. En raison des faibles bruit et courant de fuite, de la petite dimension des pixels CCD et de la masse du noyau de silicium, DAMIC est sensible aux signaux dâionisation des noyaux ou des Ă©lectrons en recul Ă la suite de la diffusion de particules de matiĂšre noire WIMPs ou du secteur cachĂ©. Le thĂšme de ma thĂšse est de faire avancer la recherche de matiĂšre noire en Ă©tudiant les fonds radioactifs qui en limitent la sensibilitĂ© et en amĂ©liorant la rĂ©solution des CCDs Ă lâaide de la technologie Skipper. Je prĂ©sente une technique pour rejeter ces fonds dans le dĂ©tecteur DAMIC Ă SNOLAB en identifiant les sĂ©quences de dĂ©sintĂ©gration spatialement corrĂ©lĂ©es. Je discute dâune mesure expĂ©rimentale de lâactivation cosmogĂ©nique du silicium obtenue via lâirradiation des CCDs. Je dĂ©cris la construction dâun modĂšle de fond radioactif pour un dĂ©tecteur de matiĂšre noire CCD, qui a rĂ©vĂ©lĂ© lâexistence dâune rĂ©gion de collecte de charges partielle. Je propose des Ă©tapes optimales pour la fabrication et la manipulation des matĂ©riaux des futurs dĂ©tecteurs. Enfin, je dĂ©cris les rĂ©sultats du dĂ©ploiement de nouveaux CCDs Skipper qui ont une rĂ©solution sub-Ă©lectron grĂące Ă des mesures multiples et non-destructives de la charge des pixels. DAMIC-M, une expĂ©rience de CCDs Skipper et dâordre dâun kg, est en cours de dĂ©veloppement. Je dĂ©cris la construction de bancs de test pour caractĂ©riser les performances des CCDs de DAMIC-M, pour lesquels une rĂ©solution de 0,07 e- a dĂ©jĂ Ă©tĂ© dĂ©montrĂ©e.The DAMIC (Dark Matter in CCDs) program employs the bulk silicon of scientific CCDs to search for ionization signals produced by interactions of particle dark matter, the nature of which is still unknown. By virtue of the low noise, low leakage current, and small pixel size of DAMIC CCDs, as well as the relatively low mass of the silicon nucleus, DAMIC is sensitive to ionization signals from recoiling nuclei or electrons following the scattering of WIMP or hidden-sector dark matter particles. The theme of this thesis is to advance next-generation CCD dark matter searches by investigating radioactive backgrounds that limit sensitivity and by improving the resolution of CCDs using Skipper technology. We present a technique to distinguish and reject background events in the DAMIC at SNOLAB detector by identifying spatially-correlated decay sequences over long periods. We also discuss a direct experimental measurement of the cosmogenic activation of silicon obtained via CCD irradiation. We review the construction of a radioactive background model for a CCD dark matter detector, which revealed the existence of a partial charge collection region in DAMIC CCDs. We propose steps for optimal material selection, fabrication, and handling of future detectors. Finally, we outline results from the deployment of novel Skipper CCDs that reach sub-electron resolution by performing non-destructive, multiple measurements of pixel charge. DAMIC-M, a kg-size Skipper CCD experiment, is being developed. We review the construction of automated test chambers to characterize DAMIC-M CCDs, for which a resolution of 0.07 e- has already been demonstrated
Recherche de matiÚre noire légÚre avec les expériences DAMIC à SNOLAB et DAMIC-M : investigations de bruit de fonds radioactifs et sur les caméras CCD Skipper en silicium
The DAMIC (Dark Matter in CCDs) program employs the bulk silicon of scientific CCDs to search for ionization signals produced by interactions of particle dark matter, the nature of which is still unknown. By virtue of the low noise, low leakage current, and small pixel size of DAMIC CCDs, as well as the relatively low mass of the silicon nucleus, DAMIC is sensitive to ionization signals from recoiling nuclei or electrons following the scattering of WIMP or hidden-sector dark matter particles. The theme of this thesis is to advance next-generation CCD dark matter searches by investigating radioactive backgrounds that limit sensitivity and by improving the resolution of CCDs using Skipper technology. We present a technique to distinguish and reject background events in the DAMIC at SNOLAB detector by identifying spatially-correlated decay sequences over long periods. We also discuss a direct experimental measurement of the cosmogenic activation of silicon obtained via CCD irradiation. We review the construction of a radioactive background model for a CCD dark matter detector, which revealed the existence of a partial charge collection region in DAMIC CCDs. We propose steps for optimal material selection, fabrication, and handling of future detectors. Finally, we outline results from the deployment of novel Skipper CCDs that reach sub-electron resolution by performing non-destructive, multiple measurements of pixel charge. DAMIC-M, a kg-size Skipper CCD experiment, is being developed. We review the construction of automated test chambers to characterize DAMIC-M CCDs, for which a resolution of 0.07 e- has already been demonstrated.Le programme DAMIC (Dark Matter in CCDs) utilise le silicium massif des CCDs scientifiques pour chercher des signaux dâionisation produits par les interactions de matiĂšre noire, dont la nature est encore inconnue. En raison des faibles bruit et courant de fuite, de la petite dimension des pixels CCD et de la masse du noyau de silicium, DAMIC est sensible aux signaux dâionisation des noyaux ou des Ă©lectrons en recul Ă la suite de la diffusion de particules de matiĂšre noire WIMPs ou du secteur cachĂ©. Le thĂšme de ma thĂšse est de faire avancer la recherche de matiĂšre noire en Ă©tudiant les fonds radioactifs qui en limitent la sensibilitĂ© et en amĂ©liorant la rĂ©solution des CCDs Ă lâaide de la technologie Skipper. Je prĂ©sente une technique pour rejeter ces fonds dans le dĂ©tecteur DAMIC Ă SNOLAB en identifiant les sĂ©quences de dĂ©sintĂ©gration spatialement corrĂ©lĂ©es. Je discute dâune mesure expĂ©rimentale de lâactivation cosmogĂ©nique du silicium obtenue via lâirradiation des CCDs. Je dĂ©cris la construction dâun modĂšle de fond radioactif pour un dĂ©tecteur de matiĂšre noire CCD, qui a rĂ©vĂ©lĂ© lâexistence dâune rĂ©gion de collecte de charges partielle. Je propose des Ă©tapes optimales pour la fabrication et la manipulation des matĂ©riaux des futurs dĂ©tecteurs. Enfin, je dĂ©cris les rĂ©sultats du dĂ©ploiement de nouveaux CCDs Skipper qui ont une rĂ©solution sub-Ă©lectron grĂące Ă des mesures multiples et non-destructives de la charge des pixels. DAMIC-M, une expĂ©rience de CCDs Skipper et dâordre dâun kg, est en cours de dĂ©veloppement. Je dĂ©cris la construction de bancs de test pour caractĂ©riser les performances des CCDs de DAMIC-M, pour lesquels une rĂ©solution de 0,07 e- a dĂ©jĂ Ă©tĂ© dĂ©montrĂ©e
Recherche de matiÚre noire légÚre avec les expériences DAMIC à SNOLAB et DAMIC-M : investigations de bruit de fonds radioactifs et sur les caméras CCD Skipper en silicium
The DAMIC (Dark Matter in CCDs) program employs the bulk silicon of scientific CCDs to search for ionization signals produced by interactions of particle dark matter, the nature of which is still unknown. By virtue of the low noise, low leakage current, and small pixel size of DAMIC CCDs, as well as the relatively low mass of the silicon nucleus, DAMIC is sensitive to ionization signals from recoiling nuclei or electrons following the scattering of WIMP or hidden-sector dark matter particles. The theme of this thesis is to advance next-generation CCD dark matter searches by investigating radioactive backgrounds that limit sensitivity and by improving the resolution of CCDs using Skipper technology. We present a technique to distinguish and reject background events in the DAMIC at SNOLAB detector by identifying spatially-correlated decay sequences over long periods. We also discuss a direct experimental measurement of the cosmogenic activation of silicon obtained via CCD irradiation. We review the construction of a radioactive background model for a CCD dark matter detector, which revealed the existence of a partial charge collection region in DAMIC CCDs. We propose steps for optimal material selection, fabrication, and handling of future detectors. Finally, we outline results from the deployment of novel Skipper CCDs that reach sub-electron resolution by performing non-destructive, multiple measurements of pixel charge. DAMIC-M, a kg-size Skipper CCD experiment, is being developed. We review the construction of automated test chambers to characterize DAMIC-M CCDs, for which a resolution of 0.07 e- has already been demonstrated.Le programme DAMIC (Dark Matter in CCDs) utilise le silicium massif des CCDs scientifiques pour chercher des signaux dâionisation produits par les interactions de matiĂšre noire, dont la nature est encore inconnue. En raison des faibles bruit et courant de fuite, de la petite dimension des pixels CCD et de la masse du noyau de silicium, DAMIC est sensible aux signaux dâionisation des noyaux ou des Ă©lectrons en recul Ă la suite de la diffusion de particules de matiĂšre noire WIMPs ou du secteur cachĂ©. Le thĂšme de ma thĂšse est de faire avancer la recherche de matiĂšre noire en Ă©tudiant les fonds radioactifs qui en limitent la sensibilitĂ© et en amĂ©liorant la rĂ©solution des CCDs Ă lâaide de la technologie Skipper. Je prĂ©sente une technique pour rejeter ces fonds dans le dĂ©tecteur DAMIC Ă SNOLAB en identifiant les sĂ©quences de dĂ©sintĂ©gration spatialement corrĂ©lĂ©es. Je discute dâune mesure expĂ©rimentale de lâactivation cosmogĂ©nique du silicium obtenue via lâirradiation des CCDs. Je dĂ©cris la construction dâun modĂšle de fond radioactif pour un dĂ©tecteur de matiĂšre noire CCD, qui a rĂ©vĂ©lĂ© lâexistence dâune rĂ©gion de collecte de charges partielle. Je propose des Ă©tapes optimales pour la fabrication et la manipulation des matĂ©riaux des futurs dĂ©tecteurs. Enfin, je dĂ©cris les rĂ©sultats du dĂ©ploiement de nouveaux CCDs Skipper qui ont une rĂ©solution sub-Ă©lectron grĂące Ă des mesures multiples et non-destructives de la charge des pixels. DAMIC-M, une expĂ©rience de CCDs Skipper et dâordre dâun kg, est en cours de dĂ©veloppement. Je dĂ©cris la construction de bancs de test pour caractĂ©riser les performances des CCDs de DAMIC-M, pour lesquels une rĂ©solution de 0,07 e- a dĂ©jĂ Ă©tĂ© dĂ©montrĂ©e
Recommended from our members
Searching for Light Dark Matter with DAMIC at SNOLAB and DAMIC-M: Investigations into Radioactive Backgrounds and Silicon Skipper Charge-Coupled Devices
The dark matter community has reached an inflection point. Strong limits have been placed on O(100 GeV) WIMPs, and attempts to produce dark matter at accelerators have not yet been successful. As such, there has been a shift towards exploring new parameter space, specifically that of light dark matter, and looking for hidden photons or dark matter-electron interactions.
The DAMIC (Dark Matter in CCDs) program employs the bulk silicon of scientific CCDs to search for ionization signals produced by interactions of particle dark matter from the galactic halo of the Milky Way. By virtue of the low noise (~2 electrons) and small pixel size (15 ÎŒm) of conventional DAMIC CCDs, as well as the relatively low mass of the silicon nucleus, DAMIC is sensitive to small ionization signals from recoiling nuclei or electrons following the scattering of dark matter particles, and especially to low-mass WIMPs with mÏ in the 1â10 Gev/c^2 range. A decade-long deployment of such detectors at the SNOLAB underground laboratory has demonstrated CCDs as successful dark matter detectors.
There are two major themes of this thesis: first, understanding backgrounds that limit the sensitivity of silicon CCD direct-detection searches, and second, improving the resolution of CCDs using Skipper technology in order to drive next-generation searches for dark matter.
A major contribution of this thesis is the development of a powerful technique to distinguish and reject background events in the DAMIC at SNOLAB detector. Utilizing the exquisite spatial resolution of CCDs, discriminating between α and ÎČ particles, we identify spatially-correlated decay sequences over long periods. We report measurements of radiocontaminants in the high resistivity CCDs from the DAMIC at SNOLAB experiment, including bulk 32Si and surface 210Pb; we also set limits for radiocontaminants along the 238U and 232Th chains. This technique will enable future silicon-based dark matter programs to optimize silicon ingot selection in order to minimize what may otherwise become a dominant and irreducible background. We also present a direct experimental measurement of the cosmogenic activation of silicon, following the irradiation of DAMIC CCDs at the LANSCE beam of the Los Alamos National Laboratory. Beyond measurements of key problematic backgrounds, we present the first-ever radioactive background model constructed for a dark matter CCD detector, which revealed the existence of a partial charge collection region in DAMIC CCDs. We outline fabrication efforts of the core element of CCD devices, with steps that can address this problematic partial charge collection layer.
Finally, this work presents results from the successful deployment of novel Skipper CCDs. These CCDs are able to reach sub-electron resolution by performing non-destructive, multiple measurements of pixel charge. DAMIC-M, a record mass, kg-size CCD experiment under development, will feature such devices. A resolution of 0.07 electrons has been demonstrated in a DAMIC-M prototype CCD. We present the work to fully characterize and integrate these detectors via the construction of automated test chambers, and outline the projected sensitivity both of DAMIC-M and its prototype, the Low Background Chamber
The FAST Project - A Next Generation UHECR Observatory
We present a concept for large-area, low-cost detection of ultrahigh-energy cosmic rays (UHECRs) with a Fluorescence detector Array of Single-pixel Telescopes (FAST)b, addressing the requirements for the next generation of UHECR experiments. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. We report on the first results of a FAST prototype installed at the Telescope Array (TA) site, consisting of a single 200 mm photomultiplier tube (PMT) at the focal plane of a 1 m2 Fresnel lens system taken from the prototype of the JEM-EUSO experiment. We also report on the status of the full-scale FAST prototype soon to be installed at the TA site, comprising a segmented spherical mirror of 1.6 m diameter and a 2 Ă 2 PMT camera
The FAST Project - A Next Generation UHECR Observatory
We present a concept for large-area, low-cost detection of ultrahigh-energy cosmic rays (UHECRs) with a Fluorescence detector Array of Single-pixel Telescopes (FAST)
JRJC 2019. Book of Proceedings
International audienc