29 research outputs found

    Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation

    Get PDF
    <div><p>Restoration of BECN1/Beclin 1-dependent autophagy and depletion of SQSTM1/p62 by genetic manipulation or autophagy-stimulatory proteostasis regulators, such as cystamine, have positive effects on mouse models of human cystic fibrosis (CF). These measures rescue the functional expression of the most frequent pathogenic CFTR mutant, F508del, at the respiratory epithelial surface and reduce lung inflammation in <i>Cftr<sup>F508del</sup></i> homozygous mice. Cysteamine, the reduced form of cystamine, is an FDA-approved drug. Here, we report that oral treatment with cysteamine greatly reduces the mortality rate and improves the phenotype of newborn mice bearing the <i>F508del-CFTR</i> mutation. Cysteamine was also able to increase the plasma membrane expression of the F508del-CFTR protein in nasal epithelial cells from <i>F508del</i> homozygous CF patients, and these effects persisted for 24 h after cysteamine withdrawal. Importantly, this cysteamine effect after washout was further sustained by the sequential administration of epigallocatechin gallate (EGCG), a green tea flavonoid, both <i>in vivo</i>, in mice, and <i>in vitro</i>, in primary epithelial cells from CF patients. In a pilot clinical trial involving 10 <i>F508del-CFTR</i> homozygous CF patients, the combination of cysteamine and EGCG restored BECN1, reduced SQSTM1 levels and improved CFTR function from nasal epithelial cells <i>in vivo</i>, correlating with a decrease of chloride concentrations in sweat, as well as with a reduction of the abundance of <i>TNF/TNF-alpha (tumor necrosis factor)</i> and <i>CXCL8</i> (<i>chemokine [C-X-C motif] ligand 8</i>) transcripts in nasal brushing and TNF and CXCL8 protein levels in the sputum. Altogether, these results suggest that optimal schedules of cysteamine plus EGCG might be used for the treatment of CF caused by the <i>F508del-CFTR</i> mutation.</p></div

    mTOR-sensitive translation: Cleared fog reveals more trees

    Get PDF
    Translation is fundamental for many biologic processes as it enables cells to rapidly respond to stimuli without requiring de novo mRNA synthesis. The mammalian/mechanistic target of rapamycin (mTOR) is a key regulator of translation. Although mTOR affects global protein synthesis, translation of a subset of mRNAs appears to be exceptionally sensitive to changes in mTOR activity. Recent efforts to catalog these mTOR-sensitive mRNAs resulted in conflicting results. Whereas ribosome-profiling almost exclusively identified 5'-terminal oligopyrimidine (TOP) mRNAs as mTOR-sensitive, polysome-profiling suggested that mTOR also regulates translation of non-TOP mRNAs. This inconsistency was explained by analytical and technical biases limiting the efficiency of ribosome-profiling in detecting mRNAs showing differential translation. Moreover, genome-wide characterization of 5'UTRs of non-TOP mTOR-sensitive mRNAs revealed 2 subsets of transcripts which differ in their requirement for translation initiation factors and biologic functions. We summarize these recent advances and their impact on the understanding of mTOR-sensitive translation

    Graphene active sensor arrays for long-term and wireless mapping of wide frequency band epicortical brain activity

    Get PDF
    Graphene active sensors have emerged as a promising building block for large-scale neural interfaces. The authors evaluate their performance in terms of wide frequency band sensitivity, stability and biocompatibility and perform proof-of-concept long-term wireless recording in a freely behaving rodent

    The novel complex allele [A238V;F508del] of the CFTR gene: clinical phenotype and possible implications for cystic fibrosis etiological therapies

    No full text
    Few mutations in cis have been annotated for F508del homozygous patients. Southern Italy patients who at a first analysis appeared homozygous for the F508del mutation (n = 63) or compound heterozygous for the F508del and another mutation in the cystic fibrosis transmembrane conductance regulator gene (n = 155) were searched for the A238V mutation in exon 6. The allelic frequency of the complex allele [A238V;F508del] was 0.04. When the whole data set was used (comprised also of 56 F508del/F508del and 34 F508del/other mutation controls), no differences reached the statistical significance in the clinical parameters, except chloride concentrations which were lower in [A238V;F508del]/other mutation compared with F508del/other mutation (P = 0.03). The two study groups presented less complications than the control groups. Within the minimal data set (34 F508del/F508del, 27 F508del/other mutation, 4 [A238V;F508del]/F508del cases and 5 [A238V;F508del]/other mutation cases); that is, presenting all the variables in each patient, forced expiratory volume in 1 s and forced vital capacity presented a trend to lower levels in the study groups in comparison with the F508del/F508del group, and C-reactive protein approximated statistically significant higher levels in the [A238V;F508del]/other mutation as compared with F508del/F508del patients (P = 0.09). The analysis of statistical dependence among the variables showed a significant anticorrelation between chloride and body mass index in the [A238V;F508del]/other mutation group. In conclusion, the complex allele [A238V;F508del] seems to be associated with less general complications than in the control groups, on the other hand possibly giving a worse pulmonary phenotype and higher systemic/local inflammatory response. These findings have implications for the correct recruitment and clinical response of F508del patients in the clinical trials testing the new etiological drugs for cystic fibrosis
    corecore