2,005 research outputs found
Ontology Mapping of PATO to YATO for the improvement of interoperability of quality description
To facilitate broad interoperability for phenotype information between different ontological frameworks, we developed a reference ontology, PATO2YATO_Quality, with the careful mapping of terms of PATO which is a quality ontology commonly used for biological phenotype annotation to the latest top-level ontology, YATO, which represents advanced modeling of quality-related concepts. As a result, YATO framework enabled to describe changes of phenotypic qualities along the courses of time in ontologically correct way and sophisticated classification and representation of interrelationships among quality-related concepts to provide fully integration of qualitative values and quantitative values obtained from phenotyping experiments and advanced representation of more detailed quality description. Thus, PATO2YATO_Quality will contribute to advanced integration of phenotypic qualities
Characteristic Temperatures of Folding of a Small Peptide
We perform a generalized-ensemble simulation of a small peptide taking the
interactions among all atoms into account. From this simulation we obtain
thermodynamic quantities over a wide range of temperatures. In particular, we
show that the folding of a small peptide is a multi-stage process associated
with two characteristic temperatures, the collapse temperature T_{\theta} and
the folding temperature T_f. Our results give supporting evidence for the
energy landscape picture and funnel concept. These ideas were previously
developed in the context of studies of simplified protein models, and here for
the first time checked in an all-atom Monte Carlo simulation.Comment: Latex, 6 Figure
Root Fungal Endophytes Enhance Heavy-Metal Stress Tolerance of Clethra barbinervis Growing Naturally at Mining Sites via Growth Enhancement, Promotion of Nutrient Uptake and Decrease of Heavy-Metal Concentration
Clethra barbinervis Sieb. et Zucc. is a tree species that grows naturally at several mine sites and seems to be tolerant of high concentrations of heavy metals, such as Cu, Zn, and Pb. The purpose of this study is to clarify the mechanism(s) underlying this species’ ability to tolerate the sites’ severe heavy-metal pollution by considering C. barbinervis interaction with root fungal endophytes. We measured the heavy metal concentrations of root-zone soil, leaves, branches, and fine roots collected from mature C. barbinervis at Hitachi mine. We isolated fungal endophytes from surface-sterilized root segments, and we examined the growth, and heavy metal and nutrient absorption of C. barbinervis seedlings growing in sterilized mine soil with or without root fungal endophytes. Field analyses showed that C. barbinervis contained considerably high amounts of Cu, Zn, and Pb in fine roots and Zn in leaves. The fungi, Phialocephala fortinii, Rhizodermea veluwensis, and Rhizoscyphus sp. were frequently isolated as dominant fungal endophyte species. Inoculation of these root fungal endophytes to C. barbinervis seedlings growing in sterilized mine soil indicated that these fungi significantly enhanced the growth of C. barbinervis seedlings, increased K uptake in shoots and reduced the concentrations of Cu, Ni, Zn, Cd, and Pb in roots. Without root fungal endophytes, C. barbinervis could hardly grow under the heavy-metal contaminated condition, showing chlorosis, a symptom of heavy-metal toxicity. Our results indicate that the tree C. barbinervis can tolerate high heavy-metal concentrations due to the support of root fungal endophytes including P. fortinii, R. veluwensis, and Rhizoscyphus sp. via growth enhancement, K uptake promotion and decrease of heavy metal concentrations
Molecular dynamics of C-peptide of ribonuclease A studied by replica-exchange Monte Carlo method and diffusion theory
Generalized-ensemble algorithm and diffusion theory have been combined in
order to compute the dynamical properties monitored by nuclear magnetic
resonance experiments from efficient and reliable evaluation of statistical
averages. Replica-exchange Monte Carlo simulations have been performed with a
C-peptide analogue of ribonuclease A, and Smoluchowski diffusion equations have
been applied. A fairly good agreement between the calculated and measured
H-NOESY NMR cross peaks has been obtained. The combination of these
advanced and continuously improving statistical tools allows the calculation of
a wide variety of dynamical properties routinely obtained by experiments.Comment: 17 pages, 5 figures, (LaTeX); Chemical Physics Letters, in pres
Metropolis simulations of Met-Enkephalin with solvent-accessible area parameterizations
We investigate the solvent-accessible area method by means of Metropolis
simulations of the brain peptide Met-Enkephalin at 300. For the energy
function ECEPP/2 nine atomic solvation parameter (ASP) sets are studied. The
simulations are compared with one another, with simulations with a distance
dependent electrostatic permittivity , and with vacuum
simulations (). Parallel tempering and the biased Metropolis
techniques RM are employed and their performance is evaluated. The measured
observables include energy and dihedral probability densities (pds), integrated
autocorrelation times, and acceptance rates. Two of the ASP sets turn out to be
unsuitable for these simulations. For all other systems selected configurations
are minimized in search of the global energy minima, which are found for the
vacuum and the system, but for none of the ASP models. Other
observables show a remarkable dependence on the ASPs. In particular, we find
three ASP sets for which the autocorrelations at 300K are considerably
smaller than for vacuum simulations.Comment: 10 pages and 8 figure
A Partially Defined Game with Payments
We investigate a new problem that can be solved by using the theory of a
partially defined game. We consider the situation described below: first, we
assume that the worth of the grand and singleton coalitions is only known. It
take some amount of costs to obtain worth of larger coalitions. If it is
performed, then players make a payment from the worth of the grand coalition.
That is, the worth of the grand coalition is reduced by examinations of
coalitional worth. The problem of a partially defined game with payments is
finding the solution of partially defined games at each point and the best
exiting rule of examinations of coalitional worth
A series of ENU-induced single-base substitutions in a long-range cis-element altering Sonic hedgehog expression in the developing mouse limb bud
AbstractMammal–fish-conserved-sequence 1 (MFCS1) is a highly conserved sequence that acts as a limb-specific cis-acting regulator of Sonic hedgehog (Shh) expression, residing 1 Mb away from the Shh coding sequence in mouse. Using gene-driven screening of an ENU-mutagenized mouse archive, we obtained mice with three new point mutations in MFCS1: M101116, M101117, and M101192. Phenotype analysis revealed that M101116 mice exhibit preaxial polydactyly and ectopic Shh expression at the anterior margin of the limb buds like a previously identified mutant, M100081. In contrast, M101117 and M101192 show no marked abnormalities in limb morphology. Furthermore, transgenic analysis revealed that the M101116 and M100081 sequences drive ectopic reporter gene expression at the anterior margin of the limb bud, in addition to the normal posterior expression. Such ectopic expression was not observed in the embryos carrying a reporter transgene driven by M101117. These results suggest that M101116 and M100081 affect the negative regulatory activity of MFCS1, which suppresses anterior Shh expression in developing limb buds. Thus, this study shows that gene-driven screening for ENU-induced mutations is an effective approach for exploring the function of conserved, noncoding sequences and potential cis-regulatory elements
- …
