148 research outputs found
Testing the paradox of enrichment along a land use gradient in a multitrophic aboveground and belowground community
In the light of ongoing land use changes, it is important to understand how multitrophic communities perform at different land use intensities. The paradox of enrichment predicts that fertilization leads to destabilization and extinction of predator-prey systems. We tested this prediction for a land use intensity gradient from natural to highly fertilized agricultural ecosystems. We included multiple aboveground and belowground trophic levels and land use-dependent searching efficiencies of insects. To overcome logistic constraints of field experiments, we used a successfully validated simulation model to investigate plant responses to removal of herbivores and their enemies. Consistent with our predictions, instability measured by herbivore-induced plant mortality increased with increasing land use intensity. Simultaneously, the balance between herbivores and natural enemies turned increasingly towards herbivore dominance and natural enemy failure. Under natural conditions, there were more frequently significant effects of belowground herbivores and their natural enemies on plant performance, whereas there were more aboveground effects in agroecosystems. This result was partly due to the âboom-bustâ behavior of the shoot herbivore population. Plant responses to herbivore or natural enemy removal were much more abrupt than the imposed smooth land use intensity gradient. This may be due to the presence of multiple trophic levels aboveground and belowground. Our model suggests that destabilization and extinction are more likely to occur in agroecosystems than in natural communities, but the shape of the relationship is nonlinear under the influence of multiple trophic interactions.
Recommended from our members
ALMaQUEST. IV. The ALMA-MaNGA QUEnching and STar Formation (ALMaQUEST) Survey
The ALMaQUEST (ALMA-MaNGA QUEnching and STar formation) survey is a program
with spatially-resolved CO(1-0) measurements obtained with the Atacama
Large Millimeter Array (ALMA) for 46 galaxies selected from the Mapping Nearby
Galaxies at Apache Point Observatory (MaNGA) DR15 optical integral-field
spectroscopic survey. The aim of the ALMaQUEST survey is to investigate the
dependence of star formation activity on the cold molecular gas content at kpc
scales in nearby galaxies. The sample consists of galaxies spanning a wide
range in specific star formation rate (sSFR), including starburst (SB),
main-sequence (MS), and green valley (GV) galaxies. In this paper, we present
the sample selection and characteristics of the ALMA observations, and showcase
some of the key results enabled by the combination of spatially-matched stellar
populations and gas measurements. Considering the global (aperture-matched)
stellar mass, molecular gas mass, and star formation rate of the sample, we
find that the sSFR depends on both the star formation efficiency (SFE) and the
molecular gas fraction (), although the correlation with the
latter is slightly weaker. Furthermore, the dependence of sSFR on the molecular
gas content (SFE or ) is stronger than that on either the atomic
gas fraction or the molecular-to-atomic gas fraction, albeit with the small HI
sample size. On kpc scales, the variations in both SFE and
within individual galaxies can be as large as 1-2 dex thereby demonstrating
that the availability of spatially-resolved observations is essential to
understand the details of both star formation and quenching processes.STFC
ER
SDSS-IV MaNGA-resolved Star Formation and Molecular Gas Properties of Green Valley Galaxies: A First Look with ALMA and MaNGA
We study the role of cold gas in quenching star formation in the green valley by analyzing ALMA 12 CO (1-0) observations of three galaxies with resolved optical spectroscopy from the MaNGA survey. We present resolution-matched maps of the star formation rate and molecular gas mass. These data are used to calculate the star formation efficiency (SFE) and gas fraction (f gas ) for these galaxies separately in the central "bulge" regions and outer disks. We find that, for the two galaxies whose global specific star formation rate (sSFR) deviates most from the star formation main sequence, the gas fraction in the bulges is significantly lower than that in their disks, supporting an "inside-out" model of galaxy quenching. For the two galaxies where SFE can be reliably determined in the central regions, the bulges and disks share similar SFEs. This suggests that a decline in f gas is the main driver of lowered sSFR in bulges compared to disks in green valley galaxies. Within the disks, there exist common correlations between the sSFR and SFE and between sSFR and f gas on kiloparsec scales - the local SFE or f gas in the disks declines with local sSFR. Our results support a picture in which the sSFR in bulges is primarily controlled by f gas , whereas both SFE and f gas play a role in lowering the sSFR in disks. A larger sample is required to confirm if the trend established in this work is representative of the green valley as a whole.The work is supported by the Ministry of Science & Technology of Taiwan under the grant MOST 103-2112-M-001-031-MY3 and 106-2112-M-001-034. R.M. and F.B. acknowledge support by the UK Science and Technology Facilities Council (STFC). R.M. acknowledges ERC Advanced Grant 695671 "QUENCH.
Metabolite Profiling of Alzheimer's Disease Cerebrospinal Fluid
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive loss of cognitive functions. Today the diagnosis of AD relies on clinical evaluations and is only late in the disease. Biomarkers for early detection of the underlying neuropathological changes are still lacking and the biochemical pathways leading to the disease are still not completely understood. The aim of this study was to identify the metabolic changes resulting from the disease phenotype by a thorough and systematic metabolite profiling approach. For this purpose CSF samples from 79 AD patients and 51 healthy controls were analyzed by gas and liquid chromatography-tandem mass spectrometry (GC-MS and LC-MS/MS) in conjunction with univariate and multivariate statistical analyses. In total 343 different analytes have been identified. Significant changes in the metabolite profile of AD patients compared to healthy controls have been identified. Increased cortisol levels seemed to be related to the progression of AD and have been detected in more severe forms of AD. Increased cysteine associated with decreased uridine was the best paired combination to identify light AD (MMSE>22) with specificity and sensitivity above 75%. In this group of patients, sensitivity and specificity above 80% were obtained for several combinations of three to five metabolites, including cortisol and various amino acids, in addition to cysteine and uridine
Nest desertion is not predicted by cuckoldry in the Eurasian penduline tit
Engagement in extra-pair copulations is an example of the abundant conflicting interests between males and females over reproduction. Potential benefits for females and the risk of cuckoldry for males are expected to have important implications on the evolution of parental care. However, whether parents adjust parental care in response to parentage remains unclear. In Eurasian penduline tits Remiz pendulinus, which are small polygamous songbirds, parental care is carried out either by the male or by the female. In addition, one third of clutches is deserted by both male and female. Desertion takes place during the egg-laying phase. Using genotypes of nine microsatellite loci of 443 offspring and 211 adults, we test whether extra-pair paternity predicts parental care. We expect males to be more likely to desert cuckolded broods, whereas we expect females, if they obtain benefits from having multiple sires, to be more likely to care for broods with multiple paternity. Our results suggest that parental care is not adjusted to parentage on an ecological timescale. Furthermore, we found that male attractiveness does not predict cuckoldry, and we found no evidence for indirect benefits for females (i.e., increased growth rates or heterozygosity of extra-pair offspring). We argue that male Eurasian penduline tits may not be able to assess the risk of cuckoldry; thus, a direct association with parental care is unlikely to evolve. However, timing of desertion (i.e., when to desert during the egg-laying phase) may be influenced by the risk of cuckoldry. Future work applying extensive gene sequencing and quantitative genetics is likely to further our understanding of how selection may influence the association between parentage and parental care
Has Motivational Interviewing fallen into its own Premature Focus Trap?
Since the initial conception of the behaviour change method Motivational Interviewing, there has been a shift evident in epistemological, methodological and practical applications, from an inductive, process and practitioner-focussed approach to that which is more deductive, research-outcome, and confirmatory-focussed. This paper highlights the conceptual and practical problems of adopting this approach, including the consequences of assessing the what (deductive outcome-focussed) at the expense of the how (inductively process-focussed). We encourage a return to an inductive, practitioner and client-focussed MI approach and propose the use of Computer Assisted Qualitative Data Analysis Systems such as NVivo in research initiatives to support this aim
Investigating the Effect of Galaxy Interactions on the Enhancement of Active Galactic Nuclei at 0.5 < z < 3.0
Galaxy interactions and mergers are thought to play an important role in the evolution of galaxies. Studies in the nearby universe show a higher AGN fraction in interacting and merging galaxies than their isolated counterparts, indicating that such interactions are important contributors to black hole growth. To investigate the evolution of this role at higher redshifts, we have compiled the largest known sample of major spectroscopic galaxy pairs (2381 with km s) at from observations in the COSMOS and CANDELS surveys. We identify X-ray and IR AGN among this kinematic pair sample, a visually identified sample of mergers and interactions, and a mass-, redshift-, and environment-matched control sample for each in order to calculate AGN fractions and the level of AGN enhancement as a function of relative velocity, redshift, and X-ray luminosity. While we see a slight increase in AGN fraction with decreasing projected separation, overall, we find no significant enhancement relative to the control sample at any separation. In the closest projected separation bin ( kpc, km s), we find enhancements of a factor of 0.94 and 1.00 for X-ray and IR-selected AGN, respectively. While we conclude that galaxy interactions do not significantly enhance AGN activity on average over at these separations, given the errors and the small sample size at the closest projected separations, our results would be consistent with the presence of low-level AGN enhancement
Lawson criterion for ignition exceeded in an inertial fusion experiment
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37Â MJ of fusion for 1.92Â MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
- âŠ