47 research outputs found

    Accuracy of physical activity recognition from a wrist-worn sensor.

    Get PDF
    The EU-funded project 'selfBACK' (http://www.selfback.eu) will utilise continuous objective monitoring of physical activity (PA) by a wrist-mounted wearable, combined with self-monitoring of symptoms and case-based reasoning. Together these will provide personalised self-management plans to people with low back pain via a novel digital health intervention. The purpose of this study was to determine the accuracy of PA recognition via wrist-mounted sensors compared to thigh-mounted sensors. Thigh or hip-mounted sensors have previously been shown to be the most accurate placement for single sensor-based PA monitoring. However, long-term adherence may be greatly enhanced with a less obtrusive wrist-worn sensor. It was therefore important to compare both locations

    Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets

    Get PDF
    Prostate cancer represents a substantial clinical challenge because it is difficult to predict outcome and advanced disease is often fatal. We sequenced the whole genomes of 112 primary and metastatic prostate cancer samples. From joint analysis of these cancers with those from previous studies (930 cancers in total), we found evidence for 22 previously unidentified putative driver genes harboring coding mutations, as well as evidence for NEAT1 and FOXA1 acting as drivers through noncoding mutations. Through the temporal dissection of aberrations, we identified driver mutations specifically associated with steps in the progression of prostate cancer, establishing, for example, loss of CHD1 and BRCA2 as early events in cancer development of ETS fusion-negative cancers. Computational chemogenomic (canSAR) analysis of prostate cancer mutations identified 11 targets of approved drugs, 7 targets of investigational drugs, and 62 targets of compounds that may be active and should be considered candidates for future clinical trials

    Rare germline variants are associated with rapid biochemical recurrence after radical prostate cancer treatment: a PPCG study

    Get PDF
    Background: Germline variants explain more than a third of prostate cancer (PrCa) risk, but very few associations have been identified between heritable factors and clinical progression.  Objective: To find rare germline variants that predict time to biochemical recurrence (BCR) after radical treatment in men with PrCa, and understand the genetic factors associated with such progression.  Design, Setting and Participants: Whole-genome sequencing data from blood DNA were analysed for 850 PrCa patients with radical treatment from the Pan Prostate Cancer Group (PPCG consortium) from UK, Canada, Germany, Australia and France. Findings were validated using 383 patients from The Cancer Genome Atlas (TCGA).  Outcome Measurements and Statistical analysis: 15,822 rare (MAF<1%) predicted-deleterious coding germline mutations were identified. Optimal multifactor and univariate Cox regression models were built to predict time to BCR after radical treatment, using germline variants grouped by functionally annotated gene-sets. Models were tested for robustness using bootstrap resampling.  Results: Optimal Cox regression multifactor models showed that rare predicted-deleterious germline variants in “Hallmark” gene-sets were consistently associated with altered time to BCR. Three gene-sets had a statistically significant association with risk-elevated outcome when modelling all samples: PI3K/AKT/mTOR, Inflammatory response and KRAS signalling (up). PI3K/AKT/mTOR and KRAS signalling (up) were also associated among patients with higher grade cancer, as were Pancreas-beta cells, TNFA signalling via NKFB and Hypoxia, the latter of which was validated in the independent TCGA dataset.  Conclusions: We demonstrate for the first time that rare deleterious coding germline variants robustly associate with time to BCR after radical treatment, including cohort-independent validation. Our findings suggest that germline testing at diagnosis could aid clinical decisions by stratifying patients for differential clinical management.  Patient summary: PrCa patients with particular genetic mutations have a higher chance of relapsing after initial radical treatment, potentially providing opportunities to identify which patients might need additional treatments earlier

    Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target.

    Get PDF
    BACKGROUND: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling. METHODS: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ(2) tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided. RESULTS: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts. CONCLUSIONS: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa.This work was supported by a Cancer Research UK program grant (to DEN) and also by the US Department of Defense (Prostate Cancer Research Program Transformative Impact Award, grant ID W81XWH-13-2-0093; WDT and SMD), PCFA/Cancer Australia/Movember (grant IDs 1012337 and 1043482; WDT and LAS), Cancer Australia (grant ID 1043497; WDT and JC) and The Ray and Shirl Norman Cancer Research Trust (WDT and LAS). The Dame Roma Mitchell Cancer Research Laboratories were supported by an establishment grant from the PCFA (ID 2011/0452). FO was supported by a PhD project grant from Prostate Cancer UK (S10-10). LAS is supported by a Young Investigator Award from the Prostate Cancer Foundation (the Foundation 14 award)

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Effect of Levosimendan on the Short-Term Clinical Course of Patients With Acutely Decompensated Heart Failure

    No full text
    Background This study evaluated the efficacy and safety of levosimendan, a positive inotropic drug with vasodilator effects, given intravenously to patients with acutely decompensated heart failure (ADHF).Methods We performed 2 sequential trials, the first to develop a new measure of efficacy in 100 patients, and the second to use this measure to evaluate levosimendan in an additional 600 patients. Patients admitted with ADHF received placebo or intravenous levosimendan for 24 h in addition to standard treatment. The primary endpoint was a composite that evaluated changes in clinical status during the first 5 days after randomization.Results In the 600-patient trial, more levosimendan than placebo patients (58 vs. 44) were improved at all 3 pre-specified time points (6 h, 24 h, and 5 days), whereas fewer levosimendan patients (58 vs. 82) experienced clinical worsening (p = 0.015 for the difference between the groups). These differences were apparent, despite more frequent intensification of adjunctive therapy in the placebo group (79 vs. 45 patients). Improvements in patient self-assessment and declines in B-type natriuretic peptide levels with levosimendan persisted for 5 days and were associated with reduced length of stay (p = 0.009). Similar findings were present in the 100-patient pilot trial. Levosimendan was associated with more frequent hypotension and cardiac arrhythmias during the infusion period and a numerically higher risk of death across the 2 trials (49 of 350 on a regimen of levosimendan vs. 40 of 350 on a regimen of placebo at 90 days, p = 0.29).Conclusions In patients with ADHF, intravenous levosimendan provided rapid and durable symptomatic relief. As dosed in this trial, levosimendan was associated with an increased risk of adverse cardiovascular events. (Evaluation of Intravenous Levosimendan Efficacy in the Short Term Treatment of Decompensated Chronic Heart Failure; NCT00048425) (C) 2013 by the American College of Cardiology Foundatio
    corecore