20 research outputs found

    A Synoptical Classification of the Bivalvia (Mollusca)

    Get PDF
    The following classification summarizes the suprageneric taxono-my of the Bivalvia for the upcoming revision of the Bivalvia volumes of the Treatise on Invertebrate Paleontology, Part N. The development of this classification began with Carter (1990a), Campbell, Hoeks-tra, and Carter (1995, 1998), Campbell (2000, 2003), and Carter, Campbell, and Campbell (2000, 2006), who, with assistance from the United States National Science Foundation, conducted large-scale morphological phylogenetic analyses of mostly Paleozoic bivalves, as well as molecular phylogenetic analyses of living bivalves. Dur-ing the past several years, their initial phylogenetic framework has been revised and greatly expanded through collaboration with many students of bivalve biology and paleontology, many of whom are coauthors. During this process, all available sources of phylogenetic information, including molecular, anatomical, shell morphological, shell microstructural, bio- and paleobiogeographic as well as strati-graphic, have been integrated into the classification. The more recent sources of phylogenetic information include, but are not limited to, Carter (1990a), Malchus (1990), J. Schneider (1995, 1998a, 1998b, 2002), T. Waller (1998), Hautmann (1999, 2001a, 2001b), Giribet and Wheeler (2002), Giribet and Distel (2003), Dreyer, Steiner, and Harper (2003), Matsumoto (2003), Harper, Dreyer, and Steiner (2006), Kappner and Bieler (2006), Mikkelsen and others (2006), Neulinger and others (2006), Taylor and Glover (2006), KĆ™Ă­ĆŸ (2007), B. Morton (2007), Taylor, Williams, and Glover (2007), Taylor and others (2007), Giribet (2008), and Kirkendale (2009). This work has also benefited from the nomenclator of bivalve families by Bouchet and Rocroi (2010) and its accompanying classification by Bieler, Carter, and Coan (2010).This classification strives to indicate the most likely phylogenetic position for each taxon. Uncertainty is indicated by a question mark before the name of the taxon. Many of the higher taxa continue to undergo major taxonomic revision. This is especially true for the superfamilies Sphaerioidea and Veneroidea, and the orders Pectinida and Unionida. Because of this state of flux, some parts of the clas-sification represent a compromise between opposing points of view. Placement of the Trigonioidoidea is especially problematic. This Mesozoic superfamily has traditionally been placed in the order Unionida, as a possible derivative of the superfamily Unionoidea (see Cox, 1952; Sha, 1992, 1993; Gu, 1998; Guo, 1998; Bieler, Carter, & Coan, 2010). However, Chen Jin-hua (2009) summarized evi-dence that Trigonioidoidea was derived instead from the superfamily Trigonioidea. Arguments for these alternatives appear equally strong, so we presently list the Trigonioidoidea, with question, under both the Trigoniida and Unionida, with the contents of the superfamily indicated under the Trigoniida.Fil: Carter, Joseph G.. University of North Carolina; Estados UnidosFil: Altaba, Cristian R.. Universidad de las Islas Baleares; EspañaFil: Anderson, Laurie C.. South Dakota School of Mines and Technology; Estados UnidosFil: Araujo, Rafael. Consejo Superior de Investigaciones Cientificas. Museo Nacional de Ciencias Naturales; EspañaFil: Biakov, Alexander S.. Russian Academy of Sciences; RusiaFil: Bogan, Arthur E.. North Carolina State Museum of Natural Sciences; Estados UnidosFil: Campbell, David. Paleontological Research Institution; Estados UnidosFil: Campbell, Matthew. Charleston Southern University; Estados UnidosFil: Chen, Jin Hua. Chinese Academy of Sciences. Nanjing Institute of Geology and Palaeontology; RepĂșblica de ChinaFil: Cope, John C. W.. National Museum of Wales. Department of Geology; Reino UnidoFil: Delvene, Graciela. Instituto GeolĂłgico y Minero de España; EspañaFil: Dijkstra, Henk H.. Netherlands Centre for Biodiversity; PaĂ­ses BajosFil: Fang, Zong Jie. Chinese Academy of Sciences; RepĂșblica de ChinaFil: Gardner, Ronald N.. No especifica;Fil: Gavrilova, Vera A.. Russian Geological Research Institute; RusiaFil: Goncharova, Irina A.. Russian Academy of Sciences; RusiaFil: Harries, Peter J.. University of South Florida; Estados UnidosFil: Hartman, Joseph H.. University of North Dakota; Estados UnidosFil: Hautmann, Michael. PalĂ€ontologisches Institut und Museum; SuizaFil: Hoeh, Walter R.. Kent State University; Estados UnidosFil: Hylleberg, Jorgen. Institute of Biology; DinamarcaFil: Jiang, Bao Yu. Nanjing University; RepĂșblica de ChinaFil: Johnston, Paul. Mount Royal University; CanadĂĄFil: Kirkendale, Lisa. University Of Wollongong; AustraliaFil: Kleemann, Karl. Universidad de Viena; AustriaFil: Koppka, Jens. Office de la Culture. Section d’ArchĂ©ologie et PalĂ©ontologie; SuizaFil: KĆ™Ă­ĆŸ, Jiƙí. Czech Geological Survey. Department of Sedimentary Formations. Lower Palaeozoic Section; RepĂșblica ChecaFil: Machado, Deusana. Universidade Federal do Rio de Janeiro; BrasilFil: Malchus, Nikolaus. Institut CatalĂ  de Paleontologia; EspañaFil: MĂĄrquez Aliaga, Ana. Universidad de Valencia; EspañaFil: Masse, Jean Pierre. Universite de Provence; FranciaFil: McRoberts, Christopher A.. State University of New York at Cortland. Department of Geology; Estados UnidosFil: Middelfart, Peter U.. Australian Museum; AustraliaFil: Mitchell, Simon. The University of the West Indies at Mona; JamaicaFil: Nevesskaja, Lidiya A.. Russian Academy of Sciences; RusiaFil: Özer, Sacit. Dokuz EylĂŒl University; TurquĂ­aFil: Pojeta, John Jr.. National Museum of Natural History; Estados UnidosFil: Polubotko, Inga V.. Russian Geological Research Institute; RusiaFil: Pons, Jose Maria. Universitat AutĂČnoma de Barcelona; EspañaFil: Popov, Sergey. Russian Academy of Sciences; RusiaFil: Sanchez, Teresa Maria. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad Nacional de CĂłrdoba; ArgentinaFil: Sartori, AndrĂ© F.. Field Museum of National History; Estados UnidosFil: Scott, Robert W.. Precision Stratigraphy Associates; Estados UnidosFil: Sey, Irina I.. Russian Geological Research Institute; RusiaFil: Signorelli, Javier Hernan. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Centro Nacional PatagĂłnico; ArgentinaFil: Silantiev, Vladimir V.. Kazan Federal University; RusiaFil: Skelton, Peter W.. Open University. Department of Earth and Environmental Sciences; Reino UnidoFil: Steuber, Thomas. The Petroleum Institute; Emiratos Arabes UnidosFil: Waterhouse, J. Bruce. No especifica;Fil: Wingard, G. Lynn. United States Geological Survey; Estados UnidosFil: Yancey, Thomas. Texas A&M University; Estados Unido

    Resource Warfare, Pacification and the Spectacle of ‘Green’ Development: Logics of Violence in Engineering Extraction in Southern Madagascar

    Get PDF
    Bringing political ecology's concern with the critical politics of nature and resource violence into dialogue with key debates in political geography, critical security studies and research on the geographies and phenomenology of violence and warfare, this paper explores strategies ‘from above’ in relation to the establishment and operation of the Rio Tinto QIT-Madagascar Minerals (QMM) ilmenite mine in southeast Madagascar. While QMM claims to be a responsible ‘green’ self-regulator and sustainable development actor, it has triggered serious social, environmental and legal conflicts since its inception, including allegations of a ‘double land grab’ to accommodate mining activities and compensatory biodiversity offsetting. We argue that ‘pacification’, theorised as a productive form of violence that works through the re-ordering of socio-nature, underwrites the forms of ‘security’, ‘stability’ and even ‘sustainability’ that facilitate multiple and overlapping strategies of value extraction in the territorial and extra-territorial spaces occupied by the QMM mine partnership. By situating these dynamics historically, we identify ways in which pacification draws upon sedimented and evolving logics of racialised violence to facilitate operations and silence opposition

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Etude d'un photosensibilateur adressé ciblant métalloprotéinases 2 et 9 dans la thérapie photodynamique

    No full text
    LILLE2-BU Santé-Recherche (593502101) / SudocSudocFranceF

    Regards croisĂ©s sur l'intimitĂ© d’adolescent.e.s dĂ©pendant.e.s: comment les personnes qui accompagnent les mineur.e.s dĂ©pendant.e.s de soins quotidiens perçoivent leur adolescence, ainsi que leur intimitĂ© ?

    No full text
    La question de la vie intime, affective et sexuelle pour les personnes en situation de handicap a été abordée de façon récurrente ces derniÚres années en Suisse avec l'avancée des droits pour les personnes en situation de handicap, notamment avec la formation et la mise en place d'assistant.e.s sexuel.le.s. Ce que nous constatons, c'est que la sexualité (et le souhait de la partager avec une autre personne) n'apparaßt pas soudainement le jour de nos 18 ans : elle est le résultat d'un processus. "A vrai dire, la sexualité commence avec la vie"

    Phosphorus use efficiency for symbiotic nitrogen fixation in voandzou ([i]Vigna subterranea[/i]) using isotopic exchange method in Rhizotron

    No full text
    Prepared by Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Soil and Water Management and CropLow bioavailability of nitrogen and phosphorus is one of the main constraints in the acid soils with high P-fixing capacity. Plants adapt to low nutrient availability through various biological and physico-chemical mechanisms. Since genetic variation of N2 fixation exists in numerous legume species, optimization of symbiotic nitrogen fixation (SNF) under P deficiency could be a way to the replenishment of soil fertility in tropical soils. As the genetic potential of crops like Vigna subterranea (Bambara groundnut or voandzou) is little studied, although its agronomic potential is interesting for the farmers of Africa, a physiological study through legume screening for N2 fixation was performed with 54 cultivars from Madagascar, Niger and Mali, inoculated with the reference strain of Bradyrhizobium sp. Vigna CB756 in hydroponic culture under P deficiency and sufficiency (30 and 75 ÎŒmol KH2PO4 plant-1 week-1, respectively), corresponding respectively to 28 and 70 mg P kg-1 of soil. Large variability of nodulation and plant biomass was found among cultivars. These two parameters were generally correlated and the slope of the plant biomass regression as a function of nodulation was considered as an indicator of the efficiency in use of the rhizobial symbiosis. For the two cultivars most tolerant to P deficiency, V1 and V4 from Madagascar, the increase in use efficiency of the rhizobial symbiosis under P deficiency was linked with an increase in nodulated root O2 consumption linked to N2 fixation, and in phytase gene expression observed on the nodule sections by in situ RTPCR. As the complexity of P compartments makes it difficult to assess the P bioavailability in the plant rhizosphere, an isotopic 32P exchange method was carried out in a rhizotron in order to assess the direct effect of the roots on P mobilization in rhizosphere soil, comparing V1 and V4 with 28 or 70 mg P kg-1 of soil. Throughout this study, the various rhizospheric mechanisms involved in the Pmobilization for the plant nutrition were assessed by diffusive phosphate ion (Pd), soil acidification by pH decrease, organic anion complexation inducing a low Al and Fe content, and mineralization of organic P through phosphatase. The gross amount of diffusive Pi (Pd) was determined as a function of Cp and time (t) by coupling sorption-desorption experiments with subsequent isotopic dilution kinetics in soil suspensions at steady-state. The Pd vs. (Cp, t) relationships varied significantly between treatments, indicating that roots modify soil properties and consequently re-distribute diffusive Pi between the soil solution and constituents. The Pd values were greater for the rhizosphere soil obtained with V1 after applying 28 mg P kg-1.This could be attributed to a strong re-supplying capacity of the soil solution in Pd along the exchange time leading to a large P nutrition of voandzou. It is concluded that genotypic variability exists among voandzou cultivars for internal adaptation to Pdeficiency

    Genotypic variation in phosphorus use efficiency for symbiotic nitrogen fixation in Voandzou ([i]Vigna subterrane[/i]a).

    No full text
    Prepared by Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Soil and Water Management and CropVigna subterranea, known as voandzou or Bambara groundnut as an African indigenous crop which is often neglected or under-used in African subsistence agriculture. Preliminary research and country perceptions have shown its agronomic and nutritional properties, in particular under atypical climates of arid and tropical areas, and in saline soils. There is a high potential to increase the production by optimizing symbiotic nitrogen fixation (SNF) through effective inoculation even in nitrate-rich environments. In this study, Vigna subterranea inoculated with the reference strain of Bradyrhizobium sp. Vigna CB756 was studied in order to assess the symbiotic fixation potential of different cultivars and landraces of Madagascar, Niger and Mali under low-P and sufficient-Pconditions. Six voandzou cultivars inoculated with Bradyrhizobium sp. Vigna CB756, were grown under hydroaeroponic culture for 6 weeks supplied with four phosphorus levels of 15, 30, 75 and 250 ÎŒmol plant-1 week-1 in order to establish the response curve of voandzou to P supply, and to induce P deficient and sufficient levels. In another experiment five tolerant cultivars with high SNF and five sensitive cultivars with low SNF were chosen after a preliminary screening of 54 voandzou genotypes, including 50 landraces from Madagascar, Niger and Mali supplied with 2 P levels as P deficient and P sufficient (30 and 75 ÎŒmol plant-1 week-1) under hydroaeroponic conditions. Genotypic variation in SFN for the high phosphorus use efficiency (PUE) was observed among the 54 cultivars and landraces. Variability was especially related to the nodule and shoot biomass, nodule permeability, nodule respiration and gene phytase expression. Contrasting cultivars and landraces in terms of PUE for SNF were selected for further evaluation under field conditions

    Effect of a herbal extract containing curcumin and piperine on midazolam, flurbiprofen and paracetamol (acetaminophen) pharmacokinetics in healthy volunteers

    No full text
    Aims Turmeric extract derived curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) are currently being evaluated for the treatment of cancer and Alzheimer's dementia. Previous in vitro studies indicate that curcuminoids and piperine (a black pepper derivative that enhances curcuminoid bioavailability) could inhibit human CYP3A, CYP2C9, UGT and SULT dependent drug metabolism. The aim of this study was to determine whether a commercially available curcuminoid/piperine extract alters the pharmacokinetic disposition of probe drugs for these enzymes in human volunteers. Methods A randomized placebo‐controlled six way crossover study was conducted in eight healthy volunteers. A standardized curcuminoid/piperine preparation (4 g curcuminoids plus 24 mg piperine) or matched placebo was given orally four times over 2 days before oral administration of midazolam (CYP3A probe), flurbiprofen (CYP2C9 probe) or paracetamol (acetaminophen) (dual UGT and SULT probe). Plasma and urine concentrations of drugs, metabolites and herbals were measured by HPLC. Subject sedation and electroencephalograph effects were also measured following midazolam dosing. Results Compared with placebo, the curcuminoid/piperine treatment produced no meaningful changes in plasma Cmax, AUC, clearance, elimination half‐life or metabolite levels of midazolam, flurbiprofen or paracetamol (α = 0.05, paired t‐tests). There was also no effect of curcuminoid/piperine treatment on the pharmacodynamics of midazolam. Although curcuminoid and piperine concentrations were readily measured in plasma following glucuronidase/sulfatase treatment, unconjugated concentrations were consistently below the assay thresholds (0.05–0.08 Όm and 0.6 Όm, respectively). Conclusion The results indicate that short term use of this piperine‐enhanced curcuminoid preparation is unlikely to result in a clinically significant interaction involving CYP3A, CYP2C9 or the paracetamol conjugation enzymes
    corecore