57 research outputs found

    Clinical Pharmacy: Looking 20 Years Back… Looking 20 Years Forward

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90209/1/phco.20.16.235S.35021.pd

    UV Absorption Lines from High-Velocity Gas in the Vela Supernova Remnant: New insights from STIS Echelle Observations of HD72089

    Get PDF
    The star HD72089 is located behind the Vela supernova remnant and shows a complex array of high and low velocity interstellar absorption features arising from shocked clouds. A spectrum of this star was recorded over the wavelength range 1196.4 to 1397.2 Angstroms at a resolving power lambda/Delta lambda = 110,000 and signal-to-noise ratio of 32 by STIS on the Hubble Space Telescope. We have identified 7 narrow components of C I and have measured their relative populations in excited fine-structure levels. Broader features at heliocentric velocities ranging from -70 to +130 km/s are seen in C II, N I, O I, Si II, S II and Ni II. In the high-velocity components, the unusually low abundances of N I and O I, relative to S II and Si II, suggest that these elements may be preferentially ionized to higher stages by radiation from hot gas immediately behind the shock fronts.Comment: 11 pages, 2 figures, Latex. Submitted for the special HST ERO issue of the Astrophysical Journal Letter

    Imaging and spectroscopy of arcs around the most luminous X-ray cluster RX J1347.5-1145

    Get PDF
    The cluster RX J1347.5-1145, the most luminous cluster in the X-ray wavelengths, was imaged with the newly installed Space Telescope Imaging Spectrograph (STIS) on-board HST. Its relatively high redshift (0.451) and luminosity indicate that this is one of the most massive of all known clusters. The STIS images unambiguously show several arcs in the cluster. The largest two arcs (> 5 arcsec in length) are symmetrically situated on opposite sides of the cluster, at a distance of ~ 35 arcsec from the central galaxy. The STIS images also show approximately 100 faint galaxies within the radius of the arcs whose combined luminosity is ~ 4 x 10^11 Lsun. We also present ground-based spectroscopic observations of the northern arc which show one clear emission line at 6730 A, which is consistent with an identification as [OII] 3727 A, implying a redshift of 0.81 for this arc. The southern arc shows a faint continuum but no emission features. The surface mass within the radius of the arcs (240 kpc), as derived from the gravitational lensing, is 6.3 x 10^14 Msun. The resultant mass-to-light ratio of ~1200 is higher than what is seen in many clusters but smaller than the value recently derived for some `dark' X-ray clusters (Hattori et al. 1997). The total surface mass derived from the X-ray flux within the radius of the arcs is ~2.1 - 6.8 x 10^14 Msun, which implies that the ratio of the gravitational to the X-ray mass is ~1 to 3. The surface GAS mass within this radius is ~3.5 x 10^13 Msun, which implies that at least 6% of the total mass within this region is baryonic.Comment: 3 figures. Replaced with the final version as appears in the Astrophysical Journal Letters (Jan 10, 1998 issue). This incorporates some important revision

    Best Practices to Diversify Chemistry Faculty

    Get PDF
    Many academic institutions have looked at various ways to make their faculty a more diverse and inclusive group of people that better reflect the demographic swath of their current and future student bodies. This is even more so important in chemistry departments, where there has long been a discussion on the “leaky pipeline” for women and underrepresented groups. The work presented here examines programs and policies at various departments aimed at increasing the diversity of their faculty applicant pool, and compares them against the reception of the general scientific community by way of applicant demographics and the use of a survey instrument designed to ascertain the advertisement language that lends to a more diverse applicant pool. The combination of these results is then used to generate a list of best practices that administrations and academic search committees can use to improve their ability to attract diverse talent

    ACCESS: Design and Sub-System Performance

    Get PDF
    Establishing improved spectrophotometric standards is important for a broad range of missions and is relevant to many astrophysical problems. ACCESS, "Absolute Color Calibration Experiment for Standard Stars", is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 -1.7 micrometer bandpass

    Land use change from C3 grassland to C4 <em>Miscanthus</em>: effects on soil carbon content and estimated mitigation benefit after six years

    Get PDF
    To date, most Miscanthus trials and commercial fields have been planted on arable land. Energy crops will need to be grown more on lower grade lands unsuitable for arable crops. Grasslands represent a major land resource for energy crops. In grasslands, where soil organic carbon (SOC) levels can be high, there have been concerns that the carbon mitigation benefits of bioenergy from Miscanthus could be offset by losses in SOC associated with land use change. At a site in Wales (UK), we quantified the relatively short-term impacts (6 years) of four novel Miscanthus hybrids and Miscanthus × giganteus on SOC in improved grassland. After 6 years, using stable carbon isotope ratios (13C/12C), the amount of Miscanthus derived C (C4) in total SOC was considerable (ca. 12%) and positively correlated to belowground biomass of different hybrids. Nevertheless, significant changes in SOC stocks (0–30 cm) were not detected as C4 Miscanthus carbon replaced the initial C3 grassland carbon; however, initial SOC decreased more in the presence of higher belowground biomass. We ascribed this apparently contradictory result to the rhizosphere priming effect triggered by easily available C sources. Observed changes in SOC partitioning were modelled using the RothC soil carbon turnover model and projected for 20 years showing that there is no significant change in SOC throughout the anticipated life of a Miscanthus crop. We interpret our observations to mean that the new labile C from Miscanthus has replaced the labile C from the grassland and, therefore, planting Miscanthus causes an insignificant change in soil organic carbon. The overall C mitigation benefit is therefore not decreased by depletion of soil C and is due to substitution of fossil fuel by the aboveground biomass, in this instance 73–108 Mg C ha−1 for the lowest and highest yielding hybrids, respectively, after 6 years
    corecore