304 research outputs found

    Widespread polycistronic gene expression in green algae

    Get PDF
    Polycistronic gene expression, common in prokaryotes, was thought to be extremely rare in eukaryotes. The development of long-read sequencing of full-length transcript isomers (Iso-Seq) has facilitated a reexamination of that dogma. Using Iso-Seq, we discovered hundreds of examples of polycistronic expression of nuclear genes in two divergent species of green algae: Chlamydomonas reinhardtii and Chromochloris zofingiensis Here, we employ a range of independent approaches to validate that multiple proteins are translated from a common transcript for hundreds of loci. A chromatin immunoprecipitation analysis using trimethylation of lysine 4 on histone H3 marks confirmed that transcription begins exclusively at the upstream gene. Quantification of polyadenylated [poly(A)] tails and poly(A) signal sequences confirmed that transcription ends exclusively after the downstream gene. Coexpression analysis found nearly perfect correlation for open reading frames (ORFs) within polycistronic loci, consistent with expression in a shared transcript. For many polycistronic loci, terminal peptides from both ORFs were identified from proteomics datasets, consistent with independent translation. Synthetic polycistronic gene pairs were transcribed and translated in vitro to recapitulate the production of two distinct proteins from a common transcript. The relative abundance of these two proteins can be modified by altering the Kozak-like sequence of the upstream gene. Replacement of the ORFs with selectable markers or reporters allows production of such heterologous proteins, speaking to utility in synthetic biology approaches. Conservation of a significant number of polycistronic gene pairs between C. reinhardtii, C. zofingiensis, and five other species suggests that this mechanism may be evolutionarily ancient and biologically important in the green algal lineage

    Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics

    Get PDF
    Background: Lipids have critical functions in cellular energy storage, structure and signaling. Many individual lipid molecules have been associated with the evolution of prostate cancer; however, none of them has been approved to be used as a biomarker. The aim of this study is to identify lipid molecules from hundreds plasma apparent lipid species as biomarkers for diagnosis of prostate cancer. Methodology/Principal Findings: Using lipidomics, lipid profiling of 390 individual apparent lipid species was performed on 141 plasma samples from 105 patients with prostate cancer and 36 male controls. High throughput data generated from lipidomics were analyzed using bioinformatic and statistical methods. From 390 apparent lipid species, 35 species were demonstrated to have potential in differentiation of prostate cancer. Within the 35 species, 12 were identified as individual plasma lipid biomarkers for diagnosis of prostate cancer with a sensitivity above 80%, specificity above 50% and accuracy above 80%. Using top 15 of 35 potential biomarkers together increased predictive power dramatically in diagnosis of prostate cancer with a sensitivity of 93.6%, specificity of 90.1% and accuracy of 97.3%. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) demonstrated that patient and control populations were visually separated by identified lipid biomarkers. RandomForest and 10-fold cross validation analyses demonstrated that the identified lipid biomarkers were able to predict unknown populations accurately, and this was not influenced by patient's age and race. Three out of 13 lipid classes, phosphatidylethanolamine (PE), ether-linked phosphatidylethanolamine (ePE) and ether-linked phosphatidylcholine (ePC) could be considered as biomarkers in diagnosis of prostate cancer. Conclusions/Significance: Using lipidomics and bioinformatic and statistical methods, we have identified a few out of hundreds plasma apparent lipid molecular species as biomarkers for diagnosis of prostate cancer with a high sensitivity, specificity and accuracy

    Dietary carbohydrate restriction as the first approach in diabetes management:Critical review and evidence base

    Get PDF
    AbstractThe inability of current recommendations to control the epidemic of diabetes, the specific failure of the prevailing low-fat diets to improve obesity, cardiovascular risk, or general health and the persistent reports of some serious side effects of commonly prescribed diabetic medications, in combination with the continued success of low-carbohydrate diets in the treatment of diabetes and metabolic syndrome without significant side effects, point to the need for a reappraisal of dietary guidelines. The benefits of carbohydrate restriction in diabetes are immediate and well documented. Concerns about the efficacy and safety are long term and conjectural rather than data driven. Dietary carbohydrate restriction reliably reduces high blood glucose, does not require weight loss (although is still best for weight loss), and leads to the reduction or elimination of medication. It has never shown side effects comparable with those seen in many drugs. Here we present 12 points of evidence supporting the use of low-carbohydrate diets as the first approach to treating type 2 diabetes and as the most effective adjunct to pharmacology in type 1. They represent the best-documented, least controversial results. The insistence on long-term randomized controlled trials as the only kind of data that will be accepted is without precedent in science. The seriousness of diabetes requires that we evaluate all of the evidence that is available. The 12 points are sufficiently compelling that we feel that the burden of proof rests with those who are opposed

    CHOP Potentially Co-Operates with FOXO3a in Neuronal Cells to Regulate PUMA and BIM Expression in Response to ER Stress

    Get PDF
    Endoplasmic reticulum (ER) stress-induced apoptosis has been implicated in various neurodegenerative diseases including Parkinson Disease, Alzheimer Disease and Huntington Disease. PUMA (p53 upregulated modulator of apoptosis) and BIM (BCL2 interacting mediator of cell death), pro-apoptotic BH3 domain-only, BCL2 family members, have previously been shown to regulate ER stress-induced cell death, but the upstream signaling pathways that regulate this response in neuronal cells are incompletely defined. Consistent with previous studies, we show that both PUMA and BIM are induced in response to ER stress in neuronal cells and that transcriptional induction of PUMA regulates ER stress-induced cell death, independent of p53. CHOP (C/EBP homologous protein also known as GADD153; gene name Ddit3), a critical initiator of ER stress-induced apoptosis, was found to regulate both PUMA and BIM expression in response to ER stress. We further show that CHOP knockdown prevents perturbations in the AKT (protein kinase B)/FOXO3a (forkhead box, class O, 3a) pathway in response to ER stress. CHOP co-immunoprecipitated with FOXO3a in tunicamycin treated cells, suggesting that CHOP may also regulate other pro-apoptotic signaling cascades culminating in PUMA and BIM activation and cell death. In summary, CHOP regulates the expression of multiple pro-apoptotic BH3-only molecules through multiple mechanisms, making CHOP an important therapeutic target relevant to a number of neurodegenerative conditions

    Hydrophobically Modified Sulfobetaine Copolymers with Tunable Aqueous UCST through Postpolymerization Modification of Poly(pentafluorophenyl acrylate)

    Get PDF
    Polysulfobetaines, polymers carrying highly polar zwitterionic side chains, present a promising research field by virtue of their antifouling properties, hemocompatibility, and stimulus-responsive behavior. However, limited synthetic approaches exist to produce sulfobetaine copolymers comprising hydrophobic components. Postpolymerization modification of an activated ester precursor, poly(pentafluorophenyl acrylate), employing a zwitterionic amine, 3-((3-aminopropyl)dimethylammonio)propane-1-sulfonate, ADPS, is presented as a novel, one-step synthetic concept toward sulfobetaine (co)polymers. Modifications were performed in homogeneous solution using propylene carbonate as solvent with mixtures of ADPS and pentylamine, benzylamine, and dodecylamine producing a series of well-defined statistical acrylamido sulfobetaine copolymers containing hydrophobic pentyl, benzyl, or dodecylacrylamide comonomers with well-controllable molar composition as evidenced by NMR and FT-IR spectroscopy and size exclusion chromatography.This synthetic strategy was exploited to investigate, for the first time, the influence of hydrophobic modification on the upper critical solution temperature (UCST) of sulfobetaine copolymers in aqueous solution. Surprisingly, incorporation of pentyl groups was found to increase solubility over a wide composition range, whereas benzyl groups decreased solubility—an effect attributed to different entropic and enthalpic contributions of both functional groups. While UCST transitions of polysulfobetaines are typically limited to higher molar mass samples, incorporation of 0–65 mol % of benzyl groups into copolymers with molar masses of 25.5–34.5 kg/mol enabled sharp, reversible transitions from 6 to 82 °C in solutions containing up to 76 mM NaCl, as observed by optical transmittance and dynamic light scattering. Both synthesis and systematic UCST increase of sulfobetaine copolymers presented here are expected to expand the scope and applicability of these smart materials

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Taxation and market power

    Get PDF
    "We analyze the incidence and welfare effects of unit sales taxes in experimental monopoly and Bertrand markets. We find, in line with economic theory, that firms with no market power are able to shift a high share of a tax burden on to consumers, independent of whether buyers are automated or human players. In monopoly markets, a monopolist bears a large share of the burden of a tax increase. With human buyers, however, this share is smaller than with automated buyers as the presence of human buyers constrains the pricing behavior of a monopolist." (author's abstract)"Dieser Artikel untersucht Inzidenz- und Wohlfahrtseffekte einer Mengensteuer in experimentellen Monopol- und Bertrand-Märkten. Im Einklang mit der ökonomischen Theorie sind Firmen ohne Marktmacht in der Lage, einen großen Anteil der Last einer Steuererhöhung an die Konsumenten weiterzugeben. Dies gilt unabhängig davon, ob die Käufer simuliert sind oder die Kaufentscheidungen durch reale Käufer getroffen werden. In Monopolmärkten trägt der Monopolist einen großen Anteil der Last einer Steuererhöhung. Werden die Kaufentscheidungen durch reale Käufer getroffen, ist dieser Anteil jedoch kleiner als mit simulierten Käufern, da reale Käufer im Experiment das Preissetzungsverhalten des Monopolisten einschränken." (Autorenreferat

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file
    corecore