6 research outputs found

    Lunar Seismology: An Update on Interior Structure Models

    Get PDF
    An international team of researchers gathered, with the support of the Interna- tional Space Science Institute (ISSI), (1) to review seismological investigations of the lunar interior from the Apollo-era and up until the present and (2) to re-assess our level of knowl- edge and uncertainty on the interior structure of the Moon. A companion paper (Nunn et al. in Space Sci. Rev., submitted) reviews and discusses the Apollo lunar seismic data with the aim of creating a new reference seismic data set for future use by the community. In this study, we first review information pertinent to the interior of the Moon that has become available since the Apollo lunar landings, particularly in the past ten years, from orbiting spacecraft, continuing measurements, modeling studies, and laboratory experiments. Fol- lowing this, we discuss and compare a set of recent published models of the lunar interior, including a detailed review of attenuation and scattering properties of the Moon. Common features and discrepancies between models and moonquake locations provide a first esti- mate of the error bars on the various seismic parameters. Eventually, to assess the influence of model parameterisation and error propagation on inverted seismic velocity models, an inversion test is presented where three different parameterisations are considered. For this purpose, we employ the travel time data set gathered in our companion paper (Nunn et al. in Space Sci. Rev., submitted). The error bars of the inverted seismic velocity models demon- strate that the Apollo lunar seismic data mainly constrain the upper- and mid-mantle struc- ture to a depth of ∼1200 km. While variable, there is some indication for an upper mantle low-velocity zone (depth range 100–250 km), which is compatible with a temperature gradi- ◦ent around 1.7 C/km. This upper mantle thermal gradient could be related to the presence of the thermally anomalous region known as the Procellarum Kreep Terrane, which contains a large amount of heat producing elements

    SIIOS in Alaska: Testing an "In-Vault" Option for a Europa Lander Seismometer Experiment

    Get PDF
    The icy moons of Europa and Enceladus are thought to have global subsurface oceans in contact with mineral-rich silicate interiors, likely providing the three ingredients needed for life as we know it: liquid water, essential chemicals, and a source of energy. The possibility of life forming in their subsurface oceans relies in part on transfer of oxidants from the irradiated ice surface to the sheltered ocean below. Constraining the mechanisms and location of material exchange between the ice surface, the ice shell, and the subsurface ocean, however, is not possible without knowledge of ice thickness and liquid water depths. In a future lander-based experiment seismic measurements will be a key geophysical tool for obtaining this critical knowledge. The Seismometer to Investigate Ice and Ocean Structure (SIIOS) field-tests flight-ready technologies and develops the analytical methods necessary to make a seismic study of Europa and Enceladus a reality. We have been performing small-array seismology with a flight-candidate sensor in analog environments that exploit passive sources. Determining the depth to a subsurface ocean and any intermediate bodies of water is a priority for Ocean Worlds missions as it allows assessment of the habitability of these worlds and provides vital information for evaluating the spacecraft technologies required to access their oceans

    Seismic Detection of Euroquakes Originating From Europa's Silicate Interior

    No full text
    Detecting a seismic event from Europa's silicate interior would provide information about the geologic and tectonic setting of the moon's rocky interior. However, the subsurface ocean will attenuate the signal, possibly preventing the waveforms from being detected by a surface seismometer. Here, we investigate the minimum magnitude of a detectable event originating from Europa's silicate interior. We analyze likely signal-to-noise ratios and compare the predicted signal strengths to current instrument sensitivities. We show that a magnitude Mw ≥ 3.5 would be sufficient to overcome the predicted background noise when the ice shell is 5 km thick. However, a minimum magnitude of Mw ≥ 5.5 would be required for current instrumentation to be able detect the event for any ice shell thickness, at any distance. A thinner ice shell transmits greater ground acceleration amplitudes than a thicker ice shell, which might allow for Mw ≥ 4.5 to be detectable.ISSN:2333-508

    Estimating the 3D structure of the Enceladus ice shell from Flexural and Crary waves using seismic simulations

    No full text
    A seismic investigation on Saturn's moon Enceladus could determine the thickness of the ice shell, along with variations from the mean thickness, by recovering phase and group velocities, and through the frequency content of surface waves. Here, we model the Enceladus ice shell with uniform thicknesses of 5 km, 20 km, and 40 km, as well as with ice topography ranging from 5-40 km. We investigate several approaches for recovering the mean ice shell thickness. We show that surface wave dispersions could be used to determine the mean ice shell thickness. Flexural waves in the ice only occur if the shell is thinner than a critical value < 20 km. Rayleigh waves dominate only in thicker ice shells. The frequency content of Crary waves depends on the ice shell thickness.ISSN:0012-821XISSN:1385-013
    corecore