15 research outputs found

    HER2-positive tumors imaged within 1 hour using a site-specifically 11C-labeled sel-tagged affibody molecule

    Get PDF
    A rapid, reliable method for distinguishing tumors or metastases that overexpress human epidermal growth factor receptor 2 (HER2) from those that do not is highly desired for individualizing therapy and predicting prognoses. In vivo imaging methods are available but not yet in clinical practice; new methodologies improving speed, sensitivity, and specificity are required. METHODS: A HER2-binding Affibody molecule, Z(HER2:342), was recombinantly fused with a C-terminal selenocysteine-containing tetrapeptide Sel-tag, allowing site-specific labeling with either (11)C or (68)Ga, followed by biodistribution studies with small-animal PET. Dosimetry data for the 2 radiotracers were compared. Imaging of HER2-expressing human tumor xenografts was performed using the (11)C-labeled Affibody molecule. RESULTS: Both the (11)C- and (68)Ga-labeled tracers initially cleared rapidly from the blood, followed by a slower decrease to 4-5 percentage injected dose per gram of tissue at 1 h. Final retention in the kidneys was much lower (>5-fold) for the (11)C-labeled protein, and its overall absorbed dose was considerably lower. (11)C-Z(HER2:342) showed excellent tumor-targeting capability, with almost 10 percentage injected dose per gram of tissue in HER2-expressing tumors within 1 h. Specificity was demonstrated by preblocking binding sites with excess ligand, yielding significantly reduced radiotracer uptake (P = 0.002), comparable to uptake in tumors with low HER2 expression. CONCLUSION: To our knowledge, the Sel-tagging technique is the first that enables site-specific (11)C-radiolabeling of proteins. Here we present the finding that, in a favorable combination between radionuclide half-life and in vivo pharmacokinetics of the Affibody molecules, (11)C-labeled Sel-tagged Z(HER2:342) can successfully be used for rapid and repeated PET studies of HER2 expression in tumors.VetenskapsrÄdetPublishe

    Parallel cyclin E and cyclin A expression in neoplastic lesions of the uterine cervix

    Get PDF
    Cyclin E levels are high during late G1 and early S-phase in normal cells. The cyclin E expression over the cell cycle in tumours is not fully known. The impact on patient outcome by high cyclin E levels during other parts of the cell cycle than late G1- and early S-phase is unknown. We set out to study the expression of cyclin E over the cell cycle in cervical carcinomas. Using immunofluorescence staining of cyclin A, digital microscopy, and digital image analysis, we determined which cells in a tissue section that were in S- or G2-phase. M-phase cells were detected by morphology. By simultaneously staining for cyclin E, we investigated the variation in cyclin E levels over the cell cycle in cervical carcinoma lesions. In a case–control study, in which each deceased patient was matched with a patient still alive and well after >5 years of follow-up, we found that the deceased patients had a considerably higher fraction of cyclin A-positive cells staining for cyclin E than the survivors (n=36). We conclude that parallel cyclin E and cyclin A expression is an indicator for poor outcome in cervical carcinomas. In addition, we investigated the expression pattern of cyclin E and cyclin A in consecutive biopsy samples from cervical carcinomas at different stages, as well as in human papillomavirus positive or negative adenocarcinomas in order to further study the cyclin E and cyclin A expression pattern in neoplastic lesions of the uterine cervix

    Expression and biological-clinical significance of hTR, hTERT and CKS2 in washing fluids of patients with bladder cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>at present, pathogenesis of bladder cancer (BC) has not been fully elucidated. Aim of this study is to investigate the role of human telomerase RNA (<it>hTR</it>), human telomerase reverse transcriptase (<it>hTERT</it>) and CDC28 protein kinase regulatory subunit 2 (<it>CKS2</it>) in bladder carcinogenesis and their possible clinical significance;</p> <p>Methods</p> <p>the transcript levels of <it>hTR</it>, <it>hTERT </it>and <it>CKS2 </it>were quantified by Real time reverse transcriptase chain reaction in exfoliated cells from bladder washings of 36 patients with BC and 58 controls. The statistical significance of differences between BC bearing patients and control groups, in the general as well as in the stratified analysis (superficial or invasive BC), was assessed by Student's t test. Non parametric Receiver Operating Characteristics analysis (ROC) was performed to ascertain the accuracy of study variables to discriminate between BC and controls. The clinical value of concomitant examination of <it>hTR</it>, <it>hTERT </it>and <it>CKS2 </it>was evaluated by logistic regression analysis;</p> <p>Results</p> <p>a significant decrease in <it>hTR </it>and a significant increase in <it>hTERT </it>or <it>CKS2 </it>gene expression were found between BC bearing patients and controls, as well as in the subgroups analysis. The area under the curve (AUC) indicated an average discrimination power for the three genes, both in the general and subgroups analysis, when singularly considered. The ability to significantly discriminate between superficial and invasive BC was observed only for <it>hTR </it>transcript levels. A combined model including <it>hTR </it>and <it>CKS2 </it>was the best one in BC diagnosis;</p> <p>Conclusions</p> <p>our results, obtained from a sample set particularly rich of exfoliated cells, provide further molecular evidence on the involvement of <it>hTR, hTERT </it>and <it>CKS2 </it>gene expression in BC carcinogenesis. In particular, while <it>hTERT </it>and <it>CKS2 </it>gene expression seems to have a major involvement in the early stages of the disease, <it>hTR </it>gene expression, seems to be more involved in progression. In addition, our findings suggest that the studied genes have a clinical role in discriminating between BC and controls in the general as well as in the stratified analysis, when singularly considered. A combined model improved over the single marker BC diagnosis.</p

    Cyclin-Dependent Kinase-Associated Proteins Cks1 and Cks2 Are Essential during Early Embryogenesis and for Cell Cycle Progression in Somatic Cells ▿

    No full text
    Cks proteins associate with cyclin-dependent kinases and have therefore been assumed to play a direct role in cell cycle regulation. Mammals have two paralogs, Cks1 and Cks2, and individually deleting the gene encoding either in the mouse has previously been shown not to impact viability. In this study we show that simultaneously disrupting CKS1 and CKS2 leads to embryonic lethality, with embryos dying at or before the morula stage after only two to four cell division cycles. RNA interference (RNAi)-mediated silencing of CKS genes in mouse embryonic fibroblasts (MEFs) or HeLa cells causes cessation of proliferation. In MEFs CKS silencing leads to cell cycle arrest in G2, followed by rereplication and polyploidy. This phenotype can be attributed to impaired transcription of the CCNB1, CCNA2, and CDK1 genes, encoding cyclin B1, cyclin A, and Cdk1, respectively. Restoration of cyclin B1 expression rescues the cell cycle arrest phenotype conferred by RNAi-mediated Cks protein depletion. Consistent with a direct role in transcription, Cks2 is recruited to chromatin in general and to the promoter regions and open reading frames of genes requiring Cks function with a cell cycle periodicity that correlates with their transcription

    CKS Proteins Protect Mitochondrial Genome Integrity by Interacting with Mitochondrial Single-stranded DNA-binding Protein*

    Get PDF
    Cyclin-dependent kinase subunit (CKS) proteins interact with cyclin-dependent kinases (CDKs) with high affinity. Mammalian CKS1 and CKS2 bind CDK1 and CDK2 and partake in the control of cell cycle progression. We identified CKS-interacting proteins by affinity purification followed by mass spectrometry in the human lymphocytic cell line Ramos. Apart from known interactors, such as CDKs, we identified a novel CDK-dependent interaction between CKS proteins and the mitochondrial single-stranded DNA-binding protein (mtSSB). mtSSB bound both CKS1 and CKS2 and underwent CDK-dependent phosphorylation. mtSSB is known to participate in replication of mitochondrial DNA. We demonstrated that mitochondrial morphology and DNA integrity were compromised in cells depleted of both CKS proteins or that had inhibited CDK activity. These features are consistent with the hypothesis of CKS-dependent regulation of mtSSB function and support a direct role of cell cycle proteins in controlling mitochondrial DNA replication
    corecore