10,361 research outputs found

    Construction of the generalized Cech complex

    Full text link
    In this paper, we introduce an algorithm which constructs the generalized Cech complex. The generalized Cech complex represents the topology of a wireless network whose cells are different in size. This complex is often used in many application to locate the boundary holes or to save energy consumption in wireless networks. The complexity of a construction of the Cech complex to analyze the coverage structure is found to be a polynomial time

    D mesons in matter and the in-medium properties of charmonium

    Get PDF
    We study the changes in the partial decay widths of excited charmonium states into DDˉD \bar{D}, when the D meson mass decreases in nuclear matter, taking the internal structure of the hadrons into account. Calculations within the 3P0 model for ψ(3686)\psi(3686) and ψ(3770)\psi(3770) imply that naive estimates of the in-medium widths based only on phase space are grossly exaggerated. Due to nodes in the wave functions, these states may even become narrow at high densities, if the D meson mass is decreased by about 200 MeV. For the χ\chi states, we generally expect stronger modifications of the widths. The relevance of the χ\chi widths for J/ψJ/\psi suppression in heavy ion collision is discussed. These phenomena could be explored in experiments at the future accelerator facility at GSI.Comment: 12 pages, 3 figures; allowed for two independent oscillator parameters for the charmonium states and D mesons, results are not significantly modified and conclusions remains unaltere

    Categorifying the Knizhnik-Zamolodchikov Connection

    Get PDF
    In the context of higher gauge theory, we construct a flat and fake flat 2-connection, in the configuration space of nn particles in the complex plane, categorifying the Knizhnik-Zamolodchikov connection. To this end, we define the differential crossed module of horizontal 2-chord diagrams, categorifying the Lie algebra of horizontal chord diagrams in a set of nn parallel copies of the interval. This therefore yields a categorification of the 4-term relation. We carefully discuss the representation theory of differential crossed modules in chain-complexes of vector spaces, which makes it possible to formulate the notion of an infinitesimal 2-R matrix in a differential crossed module.Comment: 30 pages, 2 figures; v3: final version to be published in Differential Geometry and its Application

    POLLUX : a database of synthetic stellar spectra

    Full text link
    Synthetic spectra are needed to determine fundamental stellar and wind parameters of all types of stars. They are also used for the construction of theoretical spectral libraries helpful for stellar population synthesis. Therefore, a database of theoretical spectra is required to allow rapid and quantitative comparisons to spectroscopic data. We provide such a database offering an unprecedented coverage of the entire Hertzsprung-Russell diagram. We present the POLLUX database of synthetic stellar spectra. For objects with Teff < 6 000 K, MARCS atmosphere models are computed and the program TURBOSPECTRUM provides the synthetic spectra. ATLAS12 models are computed for stars with 7 000 K <Teff <15 000 K. SYNSPEC gives the corresponding spectra. Finally, the code CMFGEN provides atmosphere models for the hottest stars (Teff > 25 000 K). Their spectra are computed with CMF_FLUX. Both high resolution (R>150 000) optical spectra in the range 3 000 to 12 000 A and spectral energy distributions extending from the UV to near--IR ranges are presented. These spectra cover the HR diagram at solar metallicity. We propose a wide variety of synthetic spectra for various types of stars in a format that is compliant with the Virtual Observatory standards. A user--friendly web interface allows an easy selection of spectra and data retrieval. Upcoming developments will include an extension to a large range of metallicities and to the near--IR high resolution spectra, as well as a better coverage of the HR diagram, with the inclusion of models for Wolf-Rayet stars and large datasets for cool stars. The POLLUX database is accessible at http://pollux.graal.univ-montp2.fr/ and through the Virtual Observatory.Comment: 9 pages, 5 figures, accepted for publication in Astronomy ans Astrophysic

    Structure determination of Split-soret Cytochrome from a Desulfovibrio species isolated from a human abdominal abcess

    Get PDF
    The determined structure of the split-soret cytochrome (SSC) isolated from Desulfovibrio desulfuricans ATCC 27774 (D.d.) revealed a new Heme arrangement, which suggests that this protein constitutes a new cytochrome class.. SSC is a 52.6kDa homodimer containing four hemes at one end of the molecule. In each monomer the two hemes have their edges overlapped within van der Waals contacts. The polypeptide chain of each monomer supplies the sixth ligand to the heme-iron of the other monomer. A similar protein was recently purified from a homologous Desulfovibrio clinical strain isolated from an abdominal wall abscess in human patient2. Crystals of this SSC were grown using vapour diffusion method in the presence of agarose gel. Diffraction data were collected using X-ray synchrotron radiation at the ESRF, beamline, ID 14-1. The structure will be solved by molecular replacement using the structure of the D.d. as a starting model

    Distributed Simplicial Homology Based Load Balancing Algorithm for Cellular Networks

    Get PDF
    International audience—In this paper, we introduce a distributed load balancing algorithm for cellular networks. Traffic load in cellular networks is sometimes unbalanced. Some cells are overloaded, while others remain free. Simplicial homology is a tool from algebraic topology that allows to compute the coverage of a network by using only simple matrix computations. Our algorithm, which is based on simplicial homology, controls the transmission power of each cell in the network, not only to satisfy the coverage constraint, but also to redirect users from the overloaded cells to the underloaded ones. As a result, the traffic load of the cellular network is more balanced. The simulation results show that this algorithm improves the capacity of the whole network by 2.3% when the user demand is fast varying

    GCIRS 7, a pulsating M1 supergiant at the Galactic centre. Physical properties and age

    Full text link
    The stellar population in the central parsec of the Galaxy is dominated by an old (several Gyr) population, but young, massive stars dominate the luminosity function. We have studied the most luminous of these stars, GCIRS 7, in order to constrain the age of the recent star formation event in the Galactic Centre and to characterise it as an interferometric reference for observations of the Galactic Centre with the instrument GRAVITY, which will equip the Very Large Telescope Interferometer in the near future. We present the first H-band interferometric observations of GCIRS 7, obtained using the PIONIER visitor instrument on the VLTI using the four 8.2-m unit telescopes. In addition, we present unpublished K-band VLTI/AMBER data, build JHKL light-curves based on data spanning 4 decades, and measured the star's effective temperature using SINFONI spectroscopy. GCIRS 7 is marginally resolved at H-band (in 2013: uniform-disk diameter=1.076+/-0.093mas, R=960+/-92Rsun at 8.33+/-0.35kpc). We detect a significant circumstellar contribution at K-band. The star and its environment are variable in brightness and in size. The photospheric H-band variations are well modelled with two periods: P0~470+/-10 days (amplitude ~0.64mag) and long secondary period LSP~2700-2850 days (~1.1mag). As measured from CO equivalent width, =3600+/-195K. The size, periods, luminosity (=-8.44+/-0.22) and effective temperature are consistent with an M1 supergiant with an initial mass of 22.5+/-2.5Msun and an age of 6.5-10Myr (depending on rotation). This age is in remarkable agreement with most estimates for the recent star formation event in the central parsec. Caution should be taken when using this star as an interferometric reference as it is variable in size, is surrounded by a variable circumstellar environment and large convection cells may form on its photosphere.Comment: Accepted for publication in A&A. 10 pages, 12 figure

    Sticky prices in the euro area: a summary of new micro evidence

    Get PDF
    This paper presents original evidence on price setting in the euro area at the individual level. We use micro data on consumer (CPI) and producer (PPI) prices, as well as survey information. Our main findings are: (i) prices in the euro area are sticky and more so than in the US; (ii) there is evidence of heterogeneity and of asymmetries in price setting behaviour; (iii) downward price rigidity is only slightly more marked than upward price rigidity and (iv) implicit or explicit contracts and coordination failure theories are important, whereas menu or information costs are judged much less relevant by firms. --Price setting,Price stickiness,Consumer prices,Producer prices,survey data

    J/Psi mass shift in nuclear matter

    Get PDF
    The J/ΨJ/\Psi mass shift in cold nuclear matter is computed using an effective Lagrangian approach. The mass shift is computed by evaluating DD and DD^* meson loop contributions to the J/ΨJ/\Psi self-energy employing medium-modified meson masses. The modification of the DD and DD^* masses in nuclear matter is obtained using the quark-meson coupling model. The loop integrals are regularized with dipole form factors and the sensitivity of the results to the values of form-factor cutoff masses is investigated. The J/ΨJ/\Psi mass shift arising from the modification of the DD and DD^* loops at normal nuclear matter density is found to range from -16 MeV to -24 MeV under a wide variation of values of the cutoff masses. Experimental perspectives for the formation of a bound state of J/ΨJ/\Psi to a nucleus are investigated.Comment: 9 pages, latex file, 6 figures. Version published in Phys. Lett.
    corecore