598 research outputs found
Multiscale analysis of re-entrant production lines: An equation-free approach
The computer-assisted modeling of re-entrant production lines, and, in
particular, simulation scalability, is attracting a lot of attention due to the
importance of such lines in semiconductor manufacturing. Re-entrant flows lead
to competition for processing capacity among the items produced, which
significantly impacts their throughput time (TPT). Such production models
naturally exhibit two time scales: a short one, characteristic of single items
processed through individual machines, and a longer one, characteristic of the
response time of the entire factory. Coarse-grained partial differential
equations for the spatio-temporal evolution of a "phase density" were obtained
through a kinetic theory approach in Armbruster et al. [2]. We take advantage
of the time scale separation to directly solve such coarse-grained equations,
even when we cannot derive them explicitly, through an equation-free
computational approach. Short bursts of appropriately initialized stochastic
fine-scale simulation are used to perform coarse projective integration on the
phase density. The key step in this process is lifting: the construction of
fine-scale, discrete realizations consistent with a given coarse-grained phase
density field. We achieve this through computational evaluation of conditional
distributions of a "phase velocity" at the limit of large item influxes.Comment: 14 pages, 17 figure
Projective and Coarse Projective Integration for Problems with Continuous Symmetries
Temporal integration of equations possessing continuous symmetries (e.g.
systems with translational invariance associated with traveling solutions and
scale invariance associated with self-similar solutions) in a ``co-evolving''
frame (i.e. a frame which is co-traveling, co-collapsing or co-exploding with
the evolving solution) leads to improved accuracy because of the smaller time
derivative in the new spatial frame. The slower time behavior permits the use
of {\it projective} and {\it coarse projective} integration with longer
projective steps in the computation of the time evolution of partial
differential equations and multiscale systems, respectively. These methods are
also demonstrated to be effective for systems which only approximately or
asymptotically possess continuous symmetries. The ideas of projective
integration in a co-evolving frame are illustrated on the one-dimensional,
translationally invariant Nagumo partial differential equation (PDE). A
corresponding kinetic Monte Carlo model, motivated from the Nagumo kinetics, is
used to illustrate the coarse-grained method. A simple, one-dimensional
diffusion problem is used to illustrate the scale invariant case. The
efficiency of projective integration in the co-evolving frame for both the
macroscopic diffusion PDE and for a random-walker particle based model is again
demonstrated
Suppression of forward dilepton production from an anisotropic quark-gluon plasma
We calculate the rapidity dependence of leading-order medium dilepton yields
resulting from a quark-gluon plasma which has a local time-dependent anisotropy
in momentum space. We present a phenomenological model which includes temporal
evolution of the plasma anisotropy parameter, xi, and the hard momentum scale,
p_hard. Our model interpolates between 1+1 dimensional collisionally-broadened
expansion at early times and 1+1 dimensional ideal hydrodynamic expansion at
late times. Using our model, we find that at LHC energies, forward high-energy
medium dilepton production would be suppressed by up to a factor of 3 if one
assumes an isotropization/thermalization time of 2 fm/c. Therefore, it may be
possible to use forward dilepton yields to experimentally determine the time of
onset of locally isotropic hydrodynamic expansion of the quark-gluon plasma as
produced in ultrarelativistic heavy-ion collisions.Comment: 12 pages, 5 figure
Bioactivities and extract dereplication of actinomycetales isolated from marine sponges
In the beginning of the twenty-first century, humanity faces great challenges regarding diseases and health-related quality of life. A drastic rise in bacterial antibiotic resistance, in the number of cancer patients, in the obesity epidemics and in chronic diseases due to life expectation extension are some of these challenges. The discovery of novel therapeutics is fundamental and it may come from underexplored environments, like marine habitats, and microbial origin. Actinobacteria are well-known as treasure chests for the discovery of novel natural compounds. In this study, eighteen Actinomycetales isolated from marine sponges of three Erylus genera collected in Portuguese waters were tested for bioactivities with the main goal of isolating and characterizing the responsible bioactive metabolites. The screening comprehended antimicrobial, anti-fungal, anti-parasitic, anti-cancer and anti-obesity properties. Fermentations of the selected strains were prepared using ten different culturing media. Several bioactivities against the fungus Aspergillus fumigatus, the bacteria Staphylococcus aureus methicillin-resistant (MRSA) and the human liver cancer cell line HepG2 were obtained in small volume cultures. Screening in higher volumes showed consistent anti-fungal activity by strain Dermacoccus sp. #91-17 and Micrococcus luteus Berg02-26. Gordonia sp. Berg02-22.2 showed anti-parasitic (Trypanosoma cruzi) and anti-cancer activity against several cell lines (melanoma A2058, liver HepG2, colon HT29, breast MCF7 and pancreatic MiaPaca). For the anti-obesity assay, Microbacterium foliorum #91-29 and #91-40 induced lipid reduction on the larvae of zebrafish (Danio rerio). Dereplication of the extracts from several bacteria showed the existence of a variety of secondary metabolites, with some undiscovered molecules. This work showed that Actinomycetales are indeed good candidates for drug discovery.This research was partially supported by the Strategic Funding UID/Multi/04423/2013 through national funds provided by FCT – Foundation for Science and Technology and European Regional Development Fund (ERDF), in the framework of the programme PT2020, the EU H2020-TWINN-2015, BLUEandGREEN – Boosting scientific excellence and innovation capacity in biorefineries based on marine resources (Project No. 692419) and the European ERA-NET Marine Biotechnology project CYANOBESITY (ERA-MBT/0001/2015), financed by national funds through FCT (Foundation for Science and Technology, Portugal). Ralph Urbatzka was supported by a FCT postdoc grant (SFRH/BPD/112287/2015). The MEDINA authors disclosed the receipt of financial support from Fundación MEDINA, a public-private partnership of Merck Sharp & Dohme de España S.A./Universidad de Granada/Junta de Andalucía. Moreover, some of the equipment used in this work was supported by the Ministerio de Ciencia e Innovación and the European Union (Grant INP-2011-0016-PCT-010000-ACT6)
Effect of mesoscopic inhomogeneities on the critical current of bulk melt-textured YBCO
The downsizing 211-inclusions and an increase of their density leads to rise
in mean critical current value in Y-based melt textured material. Very often
211-inclusion are spread in the material volume non-homogeneous, with typical
scale 50 - 100 micrometer. Therefore it is difficult to find the real
correlation between local critical current and the inclusions distribution. We
performed a study of a local critical current using modified magneto-optic
technique on a melt-textured YBaCuO ceramic, found the areas with constant
current and studied the real structure of the material in the areas, inclusions
distribution and their sizes, by scanning electron microscopy and X-ray
microanalysis. The estimation of a pinning in these places, by taking into
account the amount of inclusions and the length of their boundaries, and
comparison with the value of local critical current reveals a strait
correlation between the density of inclusions and the current but shows
remarkable quantitative disagreement.Comment: PDF (8 pages, 4 figures
Young ages and other intriguing properties of massive compact galaxies in the Local Universe
We characterize the kinematics, morphology, stellar populations and star
formation histories of a sample of massive compact galaxies in the nearby
Universe, which might provide a closer look to the nature of their high
redshift (z > 1.0) massive counterparts. We find that nearby compact massive
objects show elongated morphologies and are fast rotators. New high-quality
long-slit spectra show that they have young mean luminosity-weighted ages (<
2Gyr) and solar metallicities or above ([Z/H]> 0.0). No significant stellar
population gradients are found. The analysis of their star formation histories
suggests that these objects have experienced recently enormous bursts which, in
some cases, represent unprecedented large fractions of their total stellar
mass. These galaxies seem to be truly unique, as they do not follow the
characteristic kinematical and stellar population patterns of present-day
massive ellipticals, spirals or even dwarfs.Comment: 16 pages, 11 figures; Accepted for publication in MNRA
Duration of Treatment for Pseudomonas aeruginosa Bacteremia : a Retrospective Study
Introduction: There is no consensus regarding optimal duration of antibiotic therapy for Pseudomonas aeruginosa bacteremia. We aimed to evaluate the impact of short antibiotic course. Methods: We present a retrospective multicenter study including patients with P. aeruginosa bacteremia during 2009-2015. We evaluated outcomes of patients treated with short (6-10 days) versus long (11-15 days) antibiotic courses. The primary outcome was a composite of 30-day mortality or bacteremia recurrence and/or persistence. Univariate and inverse probability treatment-weighted (IPTW) adjusted multivariate analysis for the primary outcome was performed. To avoid immortal time bias, the landmark method was used. Results: We included 657 patients; 273 received a short antibiotic course and 384 a long course. There was no significant difference in baseline characteristics of patients. The composite primary outcome occurred in 61/384 patients in the long-treatment group (16%) versus 32/273 in the short-treatment group (12%) (p = 0.131). Mortality accounted for 41/384 (11%) versus 25/273 (9%) of cases, respectively. Length of hospital stay was significantly shorter in the short group [median 13 days, interquartile range (IQR) 9-21 days, versus median 15 days, IQR 11-26 days, p = 0.002]. Ten patients in the long group discontinued antibiotic therapy owing to adverse events, compared with none in the short group. On univariate and multivariate analyses, duration of therapy was not associated with the primary outcome. Conclusions: In this retrospective study, 6-10 days of antibiotic course for P. aeruginosa bacteremia were as effective as longer courses in terms of survival and recurrence. Shorter therapy was associated with reduced length of stay and less drug discontinuation
Proximity effect at superconducting Sn-Bi2Se3 interface
We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions
down to 250 mK and in different magnetic fields. A number of conductance
anomalies were observed below the superconducting transition temperature of Sn,
including a small gap different from that of Sn, and a zero-bias conductance
peak growing up at lower temperatures. We discussed the possible origins of the
smaller gap and the zero-bias conductance peak. These phenomena support that a
proximity-effect-induced chiral superconducting phase is formed at the
interface between the superconducting Sn and the strong spin-orbit coupling
material Bi2Se3.Comment: 7 pages, 8 figure
Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV
PHENIX has measured the centrality dependence of charged hadron p_T spectra
from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T
decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction
of the contribution from hard scattering to high p_T hadron production. For
central collisions the yield at high p_T is shown to be suppressed compared to
binary nucleon-nucleon collision scaling of p+p data. This suppression is
monotonically increasing with centrality, but most of the change occurs below
30% centrality, i.e. for collisions with less than about 140 participating
nucleons. The observed p_T and centrality dependence is consistent with the
particle production predicted by models including hard scattering and
subsequent energy loss of the scattered partons in the dense matter created in
the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to
Phys. Lett. B. Revised to address referee concerns. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are publicly available at
http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm
- …